基于红外光谱的YVO4: Bi3+, Sm3+纳米荧光粉光学温度传感

IF 3.6 3区 物理与天体物理 Q2 OPTICS
Xinlin Li, Qingyu Meng, Wenjun Sun
{"title":"基于红外光谱的YVO4: Bi3+, Sm3+纳米荧光粉光学温度传感","authors":"Xinlin Li,&nbsp;Qingyu Meng,&nbsp;Wenjun Sun","doi":"10.1016/j.jlumin.2025.121491","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a series of YVO<sub>4</sub>: Bi<sup>3+</sup>, Sm<sup>3+</sup> nanophosphors with varying dopant concentrations were synthesized via the hydrothermal method. A systematic study was conducted on their crystal structure, optical properties, and temperature-sensing properties. The experimental findings indicate that under 331 nm excitation, YVO<sub>4</sub>: Bi<sup>3+</sup>, Sm<sup>3+</sup> nanophosphors exhibit pronounced temperature-dependent luminescence. That is, the Bi<sup>3+</sup> luminescence has an obvious thermal quenching trend, whereas the thermal quenching of Sm<sup>3+</sup> luminescence is slower than that of Bi<sup>3+</sup>. Owing to the disparity in the thermal quenching tendency of the luminescence of these two ions, this difference becomes more pronounced as the temperature increases. Therefore, the fluorescence intensity ratio (FIR) of Sm<sup>3+</sup> and Bi<sup>3+</sup> can be used to characterize temperature and achieve a relatively high relative sensitivity (<em>S</em><sub><em>r</em></sub>). The nanophosphor synthesized in this study achieves a maximum <em>S</em><sub><em>r</em></sub> of 2.37 % K<sup>−1</sup> at 423 K (YVO<sub>4</sub>: 5 mol% Bi<sup>3+</sup>, 0.2 mol% Sm<sup>3+</sup>). Additionally, the luminescent colour of the nanophosphor changes from yellow-green to orange-red, with the rise of the temperature. This color change enables a rough estimation of the temperature. In conclusion, the YVO<sub>4</sub>: Bi<sup>3+</sup>, Sm<sup>3+</sup> nanophosphors demonstrate substantial potential for optical temperature-sensing applications.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"287 ","pages":"Article 121491"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optical temperature sensing based on FIR of YVO4: Bi3+, Sm3+ nanophosphors\",\"authors\":\"Xinlin Li,&nbsp;Qingyu Meng,&nbsp;Wenjun Sun\",\"doi\":\"10.1016/j.jlumin.2025.121491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a series of YVO<sub>4</sub>: Bi<sup>3+</sup>, Sm<sup>3+</sup> nanophosphors with varying dopant concentrations were synthesized via the hydrothermal method. A systematic study was conducted on their crystal structure, optical properties, and temperature-sensing properties. The experimental findings indicate that under 331 nm excitation, YVO<sub>4</sub>: Bi<sup>3+</sup>, Sm<sup>3+</sup> nanophosphors exhibit pronounced temperature-dependent luminescence. That is, the Bi<sup>3+</sup> luminescence has an obvious thermal quenching trend, whereas the thermal quenching of Sm<sup>3+</sup> luminescence is slower than that of Bi<sup>3+</sup>. Owing to the disparity in the thermal quenching tendency of the luminescence of these two ions, this difference becomes more pronounced as the temperature increases. Therefore, the fluorescence intensity ratio (FIR) of Sm<sup>3+</sup> and Bi<sup>3+</sup> can be used to characterize temperature and achieve a relatively high relative sensitivity (<em>S</em><sub><em>r</em></sub>). The nanophosphor synthesized in this study achieves a maximum <em>S</em><sub><em>r</em></sub> of 2.37 % K<sup>−1</sup> at 423 K (YVO<sub>4</sub>: 5 mol% Bi<sup>3+</sup>, 0.2 mol% Sm<sup>3+</sup>). Additionally, the luminescent colour of the nanophosphor changes from yellow-green to orange-red, with the rise of the temperature. This color change enables a rough estimation of the temperature. In conclusion, the YVO<sub>4</sub>: Bi<sup>3+</sup>, Sm<sup>3+</sup> nanophosphors demonstrate substantial potential for optical temperature-sensing applications.</div></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":\"287 \",\"pages\":\"Article 121491\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231325004314\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231325004314","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用水热法制备了不同掺杂浓度的YVO4: Bi3+, Sm3+纳米荧光粉。对其晶体结构、光学特性和感温特性进行了系统的研究。实验结果表明,在331 nm激发下,YVO4: Bi3+, Sm3+纳米荧光粉表现出明显的温度依赖性发光。即Bi3+发光有明显的热猝灭趋势,而Sm3+发光的热猝灭比Bi3+慢。由于这两种离子发光的热猝灭倾向存在差异,随着温度的升高,这种差异变得更加明显。因此,Sm3+和Bi3+的荧光强度比(FIR)可以用来表征温度,并获得较高的相对灵敏度(Sr)。在423 K (YVO4: 5 mol% Bi3+, 0.2 mol% Sm3+)下,合成的纳米磷光体的最大Sr为2.37% K−1。此外,纳米荧光粉的发光颜色随着温度的升高从黄绿色变为橙红色。这种颜色的变化可以粗略地估计温度。综上所述,YVO4: Bi3+, Sm3+纳米荧光粉在光学温度传感方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optical temperature sensing based on FIR of YVO4: Bi3+, Sm3+ nanophosphors
In this study, a series of YVO4: Bi3+, Sm3+ nanophosphors with varying dopant concentrations were synthesized via the hydrothermal method. A systematic study was conducted on their crystal structure, optical properties, and temperature-sensing properties. The experimental findings indicate that under 331 nm excitation, YVO4: Bi3+, Sm3+ nanophosphors exhibit pronounced temperature-dependent luminescence. That is, the Bi3+ luminescence has an obvious thermal quenching trend, whereas the thermal quenching of Sm3+ luminescence is slower than that of Bi3+. Owing to the disparity in the thermal quenching tendency of the luminescence of these two ions, this difference becomes more pronounced as the temperature increases. Therefore, the fluorescence intensity ratio (FIR) of Sm3+ and Bi3+ can be used to characterize temperature and achieve a relatively high relative sensitivity (Sr). The nanophosphor synthesized in this study achieves a maximum Sr of 2.37 % K−1 at 423 K (YVO4: 5 mol% Bi3+, 0.2 mol% Sm3+). Additionally, the luminescent colour of the nanophosphor changes from yellow-green to orange-red, with the rise of the temperature. This color change enables a rough estimation of the temperature. In conclusion, the YVO4: Bi3+, Sm3+ nanophosphors demonstrate substantial potential for optical temperature-sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Luminescence
Journal of Luminescence 物理-光学
CiteScore
6.70
自引率
13.90%
发文量
850
审稿时长
3.8 months
期刊介绍: The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid. We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信