一种新的Moore-Penrose逆对偶四元数矩阵及其应用

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Zi-Han Gao , Qing-Wen Wang , Lv-Ming Xie
{"title":"一种新的Moore-Penrose逆对偶四元数矩阵及其应用","authors":"Zi-Han Gao ,&nbsp;Qing-Wen Wang ,&nbsp;Lv-Ming Xie","doi":"10.1016/j.aml.2025.109727","DOIUrl":null,"url":null,"abstract":"<div><div>In previous studies, the dual quaternion Moore–Penrose inverse was defined as a solution to the four Penrose equations, but it does not exist for all dual quaternion matrices. This paper introduces a novel dual quaternion Moore–Penrose (NDQMP) inverse by modifying the first Penrose equation <span><math><mrow><mi>A</mi><mi>X</mi><mi>A</mi><mo>=</mo><mi>A</mi></mrow></math></span> to <span><math><mrow><mi>A</mi><mi>X</mi><mi>A</mi><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> is the essential approximation of <span><math><mi>A</mi></math></span>. The NDQMP inverse is shown to exist and be unique for all dual quaternion matrices. Using this inverse, we directly provide the necessary and sufficient conditions for the solvability of the dual quaternion matrix equation <span><math><mrow><mi>A</mi><mi>X</mi><mi>B</mi><mo>=</mo><mi>C</mi></mrow></math></span>, along with an expression for the least-squares solution. Finally, the main results are applied to kinematics and image processing, highlighting their practical utility.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109727"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel Moore–Penrose inverse to dual quaternion matrices with applications\",\"authors\":\"Zi-Han Gao ,&nbsp;Qing-Wen Wang ,&nbsp;Lv-Ming Xie\",\"doi\":\"10.1016/j.aml.2025.109727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In previous studies, the dual quaternion Moore–Penrose inverse was defined as a solution to the four Penrose equations, but it does not exist for all dual quaternion matrices. This paper introduces a novel dual quaternion Moore–Penrose (NDQMP) inverse by modifying the first Penrose equation <span><math><mrow><mi>A</mi><mi>X</mi><mi>A</mi><mo>=</mo><mi>A</mi></mrow></math></span> to <span><math><mrow><mi>A</mi><mi>X</mi><mi>A</mi><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> is the essential approximation of <span><math><mi>A</mi></math></span>. The NDQMP inverse is shown to exist and be unique for all dual quaternion matrices. Using this inverse, we directly provide the necessary and sufficient conditions for the solvability of the dual quaternion matrix equation <span><math><mrow><mi>A</mi><mi>X</mi><mi>B</mi><mo>=</mo><mi>C</mi></mrow></math></span>, along with an expression for the least-squares solution. Finally, the main results are applied to kinematics and image processing, highlighting their practical utility.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109727\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002770\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002770","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在以往的研究中,对偶四元数Moore-Penrose逆被定义为四个Penrose方程的解,但它并不存在于所有对偶四元数矩阵中。本文将第一个Penrose方程AXA= a修改为AXA=Ae,其中Ae是a的本质逼近,引入了一种新的对偶四元数Moore-Penrose (NDQMP)逆,证明了NDQMP逆对所有对偶四元数矩阵存在且唯一。利用这一逆,直接给出了对偶四元数矩阵方程AXB=C可解的充分必要条件,并给出了其最小二乘解的表达式。最后,将主要结果应用于运动学和图像处理,突出了它们的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel Moore–Penrose inverse to dual quaternion matrices with applications
In previous studies, the dual quaternion Moore–Penrose inverse was defined as a solution to the four Penrose equations, but it does not exist for all dual quaternion matrices. This paper introduces a novel dual quaternion Moore–Penrose (NDQMP) inverse by modifying the first Penrose equation AXA=A to AXA=Ae, where Ae is the essential approximation of A. The NDQMP inverse is shown to exist and be unique for all dual quaternion matrices. Using this inverse, we directly provide the necessary and sufficient conditions for the solvability of the dual quaternion matrix equation AXB=C, along with an expression for the least-squares solution. Finally, the main results are applied to kinematics and image processing, highlighting their practical utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信