遗传信息树(GIT*):基于强化遗传规划启发式的路径规划

IF 5.4
Liding Zhang , Kuanqi Cai , Zhenshan Bing , Chaoqun Wang , Alois Knoll
{"title":"遗传信息树(GIT*):基于强化遗传规划启发式的路径规划","authors":"Liding Zhang ,&nbsp;Kuanqi Cai ,&nbsp;Zhenshan Bing ,&nbsp;Chaoqun Wang ,&nbsp;Alois Knoll","doi":"10.1016/j.birob.2025.100237","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal path planning involves finding a feasible state sequence between a start and a goal that optimizes an objective. This process relies on heuristic functions to guide the search direction. While a robust function can improve search efficiency and solution quality, current methods often overlook available environmental data and simplify the function structure due to the complexity of information relationships. This study introduces Genetic Informed Trees (GIT*), which improves upon Effort Informed Trees (EIT*) by integrating a wider array of environmental data, such as repulsive forces from obstacles and the dynamic importance of vertices, to refine heuristic functions for better guidance. Furthermore, we integrated reinforced genetic programming (RGP), which combines genetic programming with reward system feedback to mutate genotype-generative heuristic functions for GIT*. RGP leverages a multitude of data types, thereby improving computational efficiency and solution quality within a set timeframe. Comparative analyses demonstrate that GIT* surpasses existing single-query, sampling-based planners in problems ranging from <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>16</mn></mrow></msup></math></span> and was tested on a real-world mobile manipulation task. A video showcasing our experimental results is available at <span><span>https://youtu.be/URjXbc_BiYg</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 3","pages":"Article 100237"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Informed Trees (GIT*): Path planning via reinforced genetic programming heuristics\",\"authors\":\"Liding Zhang ,&nbsp;Kuanqi Cai ,&nbsp;Zhenshan Bing ,&nbsp;Chaoqun Wang ,&nbsp;Alois Knoll\",\"doi\":\"10.1016/j.birob.2025.100237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimal path planning involves finding a feasible state sequence between a start and a goal that optimizes an objective. This process relies on heuristic functions to guide the search direction. While a robust function can improve search efficiency and solution quality, current methods often overlook available environmental data and simplify the function structure due to the complexity of information relationships. This study introduces Genetic Informed Trees (GIT*), which improves upon Effort Informed Trees (EIT*) by integrating a wider array of environmental data, such as repulsive forces from obstacles and the dynamic importance of vertices, to refine heuristic functions for better guidance. Furthermore, we integrated reinforced genetic programming (RGP), which combines genetic programming with reward system feedback to mutate genotype-generative heuristic functions for GIT*. RGP leverages a multitude of data types, thereby improving computational efficiency and solution quality within a set timeframe. Comparative analyses demonstrate that GIT* surpasses existing single-query, sampling-based planners in problems ranging from <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>16</mn></mrow></msup></math></span> and was tested on a real-world mobile manipulation task. A video showcasing our experimental results is available at <span><span>https://youtu.be/URjXbc_BiYg</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":100184,\"journal\":{\"name\":\"Biomimetic Intelligence and Robotics\",\"volume\":\"5 3\",\"pages\":\"Article 100237\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetic Intelligence and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667379725000282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379725000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最优路径规划包括在起点和目标之间找到一个可行的状态序列,以优化目标。该过程依靠启发式函数来指导搜索方向。虽然鲁棒函数可以提高搜索效率和求解质量,但由于信息关系的复杂性,目前的方法往往忽略了可用的环境数据,并简化了函数结构。本研究引入了遗传信息树(GIT*),它在努力信息树(EIT*)的基础上改进了遗传信息树(GIT*),通过整合更广泛的环境数据,如障碍物的排斥力和顶点的动态重要性,来改进启发式函数,以获得更好的指导。此外,我们将强化遗传规划(RGP)与奖励系统反馈相结合,对GIT*的基因型生成启发式函数进行了突变。RGP利用多种数据类型,从而在设定的时间范围内提高计算效率和解决方案质量。对比分析表明,GIT*在R4到R16的问题中超越了现有的单查询、基于抽样的计划器,并在现实世界的移动操作任务中进行了测试。展示我们实验结果的视频可以在https://youtu.be/URjXbc_BiYg上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Informed Trees (GIT*): Path planning via reinforced genetic programming heuristics
Optimal path planning involves finding a feasible state sequence between a start and a goal that optimizes an objective. This process relies on heuristic functions to guide the search direction. While a robust function can improve search efficiency and solution quality, current methods often overlook available environmental data and simplify the function structure due to the complexity of information relationships. This study introduces Genetic Informed Trees (GIT*), which improves upon Effort Informed Trees (EIT*) by integrating a wider array of environmental data, such as repulsive forces from obstacles and the dynamic importance of vertices, to refine heuristic functions for better guidance. Furthermore, we integrated reinforced genetic programming (RGP), which combines genetic programming with reward system feedback to mutate genotype-generative heuristic functions for GIT*. RGP leverages a multitude of data types, thereby improving computational efficiency and solution quality within a set timeframe. Comparative analyses demonstrate that GIT* surpasses existing single-query, sampling-based planners in problems ranging from R4 to R16 and was tested on a real-world mobile manipulation task. A video showcasing our experimental results is available at https://youtu.be/URjXbc_BiYg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信