具有不同支持限制的大样本矩阵优化

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frits Verhagen;Marco Tomamichel;Erkka Haapasalo
{"title":"具有不同支持限制的大样本矩阵优化","authors":"Frits Verhagen;Marco Tomamichel;Erkka Haapasalo","doi":"10.1109/TIT.2025.3585062","DOIUrl":null,"url":null,"abstract":"We say that a matrix <italic>P</i> with non-negative entries majorizes another such matrix <italic>Q</i> if there is a stochastic matrix <italic>T</i> such that <inline-formula> <tex-math>$Q=TP$ </tex-math></inline-formula>. We study matrix majorization in large samples and in the catalytic regime in the case where the columns of the matrices need not have equal support, as has been assumed in earlier works. We focus on two cases: either there are no support restrictions (except for requiring a non-empty intersection for the supports) or the final column dominates the others. Using real-algebraic methods, we identify sufficient and almost necessary conditions for majorization in large samples or when using catalytic states under these support conditions. These conditions are given in terms of multivariate divergences that generalize the Rényi divergences. We notice that varying support conditions dramatically affect the relevant set of divergences. Our results find an application in the theory of catalytic state transformation in quantum thermodynamics.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 9","pages":"6517-6545"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix Majorization in Large Samples With Varying Support Restrictions\",\"authors\":\"Frits Verhagen;Marco Tomamichel;Erkka Haapasalo\",\"doi\":\"10.1109/TIT.2025.3585062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say that a matrix <italic>P</i> with non-negative entries majorizes another such matrix <italic>Q</i> if there is a stochastic matrix <italic>T</i> such that <inline-formula> <tex-math>$Q=TP$ </tex-math></inline-formula>. We study matrix majorization in large samples and in the catalytic regime in the case where the columns of the matrices need not have equal support, as has been assumed in earlier works. We focus on two cases: either there are no support restrictions (except for requiring a non-empty intersection for the supports) or the final column dominates the others. Using real-algebraic methods, we identify sufficient and almost necessary conditions for majorization in large samples or when using catalytic states under these support conditions. These conditions are given in terms of multivariate divergences that generalize the Rényi divergences. We notice that varying support conditions dramatically affect the relevant set of divergences. Our results find an application in the theory of catalytic state transformation in quantum thermodynamics.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 9\",\"pages\":\"6517-6545\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11063446/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11063446/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

如果有一个随机矩阵T使得Q=TP,我们说一个非负项矩阵P使另一个这样的矩阵Q最大化。我们研究了在大样品和催化制度下的基质多数化,在这种情况下,基质的柱不需要有相等的支持,如在早期的工作中所假设的。我们关注两种情况:要么没有支撑限制(除了要求支撑的非空交叉点),要么最后一列支配其他列。使用实代数方法,我们确定了在大样品中或在这些支持条件下使用催化状态时进行多数化的充分和几乎必要的条件。这些条件是用多元散度的形式给出的,这些散度概括了雷氏散度。我们注意到,不同的支持条件极大地影响了相关的散度集。我们的研究结果在量子热力学的催化态转变理论中得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix Majorization in Large Samples With Varying Support Restrictions
We say that a matrix P with non-negative entries majorizes another such matrix Q if there is a stochastic matrix T such that $Q=TP$ . We study matrix majorization in large samples and in the catalytic regime in the case where the columns of the matrices need not have equal support, as has been assumed in earlier works. We focus on two cases: either there are no support restrictions (except for requiring a non-empty intersection for the supports) or the final column dominates the others. Using real-algebraic methods, we identify sufficient and almost necessary conditions for majorization in large samples or when using catalytic states under these support conditions. These conditions are given in terms of multivariate divergences that generalize the Rényi divergences. We notice that varying support conditions dramatically affect the relevant set of divergences. Our results find an application in the theory of catalytic state transformation in quantum thermodynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信