pltkin -最优线性码的存在性

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hopein Christofen Tang
{"title":"pltkin -最优线性码的存在性","authors":"Hopein Christofen Tang","doi":"10.1109/TIT.2025.3582936","DOIUrl":null,"url":null,"abstract":"We generalize the Plotkin-type Lee distance bound for linear codes over <inline-formula> <tex-math>$\\mathbb {Z}_{4}$ </tex-math></inline-formula> to several new and stronger bounds. We apply these bounds to determine all possible integers <italic>n</i> such that Plotkin-optimal linear codes over <inline-formula> <tex-math>$\\mathbb {Z}_{4}$ </tex-math></inline-formula> of length <italic>n</i> and type <inline-formula> <tex-math>$4^{k_{1}}2^{k_{2}}$ </tex-math></inline-formula> exist for any given non-negative integers <inline-formula> <tex-math>$k_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$k_{2}$ </tex-math></inline-formula>. We furthermore provide construction methods for Plotkin-optimal linear codes over <inline-formula> <tex-math>$\\mathbb {Z}_{4}$ </tex-math></inline-formula> for each possible length mentioned above. Our results are in large part established by considering column multiplicities of generator matrices.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 9","pages":"6712-6726"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Existence of Plotkin-Optimal Linear Codes Over ℤ4\",\"authors\":\"Hopein Christofen Tang\",\"doi\":\"10.1109/TIT.2025.3582936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the Plotkin-type Lee distance bound for linear codes over <inline-formula> <tex-math>$\\\\mathbb {Z}_{4}$ </tex-math></inline-formula> to several new and stronger bounds. We apply these bounds to determine all possible integers <italic>n</i> such that Plotkin-optimal linear codes over <inline-formula> <tex-math>$\\\\mathbb {Z}_{4}$ </tex-math></inline-formula> of length <italic>n</i> and type <inline-formula> <tex-math>$4^{k_{1}}2^{k_{2}}$ </tex-math></inline-formula> exist for any given non-negative integers <inline-formula> <tex-math>$k_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$k_{2}$ </tex-math></inline-formula>. We furthermore provide construction methods for Plotkin-optimal linear codes over <inline-formula> <tex-math>$\\\\mathbb {Z}_{4}$ </tex-math></inline-formula> for each possible length mentioned above. Our results are in large part established by considering column multiplicities of generator matrices.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 9\",\"pages\":\"6712-6726\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11051067/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11051067/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们将$\mathbb {Z}_{4}$上线性码的Plotkin-type Lee距离界推广到几个新的更强的界。我们应用这些界来确定所有可能的整数n,使得对于任意给定的非负整数$k_{1}$和$k_{2}$,长度为n且类型为$4^{k_{1}}2^{k_{2}}$的$\mathbb {Z}_{4}$上存在普罗金最优线性码。我们进一步提供了$\mathbb {Z}_{4}$上每个可能长度的plotkin最优线性码的构造方法。我们的结果在很大程度上是通过考虑生成矩阵的列多重性来建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Existence of Plotkin-Optimal Linear Codes Over ℤ4
We generalize the Plotkin-type Lee distance bound for linear codes over $\mathbb {Z}_{4}$ to several new and stronger bounds. We apply these bounds to determine all possible integers n such that Plotkin-optimal linear codes over $\mathbb {Z}_{4}$ of length n and type $4^{k_{1}}2^{k_{2}}$ exist for any given non-negative integers $k_{1}$ and $k_{2}$ . We furthermore provide construction methods for Plotkin-optimal linear codes over $\mathbb {Z}_{4}$ for each possible length mentioned above. Our results are in large part established by considering column multiplicities of generator matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信