Rosenbloom-Tsfasman度量和最优结构线性矩阵码的新界

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xinran Wang;Chengju Li;Ziling Heng
{"title":"Rosenbloom-Tsfasman度量和最优结构线性矩阵码的新界","authors":"Xinran Wang;Chengju Li;Ziling Heng","doi":"10.1109/TIT.2025.3581994","DOIUrl":null,"url":null,"abstract":"The Rosenbloom-Tsfasman metric (RT-metric for short) is a generalization of the Hamming metric. Matrix codes in the frame of the RT-metric have been used in information transmission over parallel channels. In this paper, we develop some new upper bounds on the minimum RT-distance of an <inline-formula> <tex-math>$[h \\times n, k, d_{\\mathrm {RT}}]$ </tex-math></inline-formula> linear matrix code, which generalize the Singleton-type bound derived by Rosenbloom and Tsfasman. It should be emphasized that the upper bounds build a connection between the RT-metric and the Hamming metric. Constructions of linear matrix codes are presented and their parameters for the RT-metric are investigated. It is shown that every linear matrix code can be expressed by using the trace function, which is a generalization of the well-known defining-set construction of linear codes. Moreover, we obtain several classes of optimal linear matrix codes in this paper.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 9","pages":"6844-6856"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Bounds of Linear Matrix Codes for the Rosenbloom-Tsfasman Metric and Optimal Constructions\",\"authors\":\"Xinran Wang;Chengju Li;Ziling Heng\",\"doi\":\"10.1109/TIT.2025.3581994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Rosenbloom-Tsfasman metric (RT-metric for short) is a generalization of the Hamming metric. Matrix codes in the frame of the RT-metric have been used in information transmission over parallel channels. In this paper, we develop some new upper bounds on the minimum RT-distance of an <inline-formula> <tex-math>$[h \\\\times n, k, d_{\\\\mathrm {RT}}]$ </tex-math></inline-formula> linear matrix code, which generalize the Singleton-type bound derived by Rosenbloom and Tsfasman. It should be emphasized that the upper bounds build a connection between the RT-metric and the Hamming metric. Constructions of linear matrix codes are presented and their parameters for the RT-metric are investigated. It is shown that every linear matrix code can be expressed by using the trace function, which is a generalization of the well-known defining-set construction of linear codes. Moreover, we obtain several classes of optimal linear matrix codes in this paper.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 9\",\"pages\":\"6844-6856\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11045953/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11045953/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

Rosenbloom-Tsfasman度规(简称rt度规)是汉明度规的推广。在RT-metric框架中的矩阵码已被用于在并行信道上的信息传输。本文给出了$[h \乘以n, k, d_{\ mathm {RT}}]$线性矩阵码的最小RT距离的一些新的上界,推广了Rosenbloom和Tsfasman导出的单态界。应该强调的是,上界建立了rt度规和汉明度规之间的联系。给出了线性矩阵码的构造,并对其参数进行了研究。证明了每一个线性矩阵码都可以用迹函数表示,这是对众所周知的线性码的定义集构造的推广。此外,本文还得到了几类最优线性矩阵码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Bounds of Linear Matrix Codes for the Rosenbloom-Tsfasman Metric and Optimal Constructions
The Rosenbloom-Tsfasman metric (RT-metric for short) is a generalization of the Hamming metric. Matrix codes in the frame of the RT-metric have been used in information transmission over parallel channels. In this paper, we develop some new upper bounds on the minimum RT-distance of an $[h \times n, k, d_{\mathrm {RT}}]$ linear matrix code, which generalize the Singleton-type bound derived by Rosenbloom and Tsfasman. It should be emphasized that the upper bounds build a connection between the RT-metric and the Hamming metric. Constructions of linear matrix codes are presented and their parameters for the RT-metric are investigated. It is shown that every linear matrix code can be expressed by using the trace function, which is a generalization of the well-known defining-set construction of linear codes. Moreover, we obtain several classes of optimal linear matrix codes in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信