使用时空感知机器学习算法评估美国相邻地区的日流温度预测(1979-2021)

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jeremy Diaz , Samantha Oliver , Galen Gorski
{"title":"使用时空感知机器学习算法评估美国相邻地区的日流温度预测(1979-2021)","authors":"Jeremy Diaz ,&nbsp;Samantha Oliver ,&nbsp;Galen Gorski","doi":"10.1016/j.envsoft.2025.106655","DOIUrl":null,"url":null,"abstract":"<div><div>Stream temperature controls a variety of physical and biological processes that affect ecosystems, human health, and economic activities. We used 42 years (1979–2021) of data to predict daily summary statistics of stream temperature across &gt;50,000 stream reaches in the contiguous United States using a recurrent graph convolution network. We comprehensively documented the performance – both across all reaches and by stream type (e.g., reservoir or groundwater influence) – as a baseline for future improvement. The model showed reach-level RMSE of &lt;2 °C with 90 % prediction intervals that contain 90.7 % of observations. We also assessed how the model captured variability in ecologically relevant metrics (e.g., R<sup>2</sup> for annual 7-day maximum = 0.76; R<sup>2</sup> for days exceeding 25 °C = 0.75). This model does not outperform state-of-the-art machine learning efforts (e.g., RMSE ≤1.5 °C) due to a limited input set but does provide the most spatially complete modeling to date to support water availability assessments.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106655"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of daily stream temperature predictions (1979–2021) across the contiguous United States using a spatiotemporal aware machine learning algorithm\",\"authors\":\"Jeremy Diaz ,&nbsp;Samantha Oliver ,&nbsp;Galen Gorski\",\"doi\":\"10.1016/j.envsoft.2025.106655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stream temperature controls a variety of physical and biological processes that affect ecosystems, human health, and economic activities. We used 42 years (1979–2021) of data to predict daily summary statistics of stream temperature across &gt;50,000 stream reaches in the contiguous United States using a recurrent graph convolution network. We comprehensively documented the performance – both across all reaches and by stream type (e.g., reservoir or groundwater influence) – as a baseline for future improvement. The model showed reach-level RMSE of &lt;2 °C with 90 % prediction intervals that contain 90.7 % of observations. We also assessed how the model captured variability in ecologically relevant metrics (e.g., R<sup>2</sup> for annual 7-day maximum = 0.76; R<sup>2</sup> for days exceeding 25 °C = 0.75). This model does not outperform state-of-the-art machine learning efforts (e.g., RMSE ≤1.5 °C) due to a limited input set but does provide the most spatially complete modeling to date to support water availability assessments.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"193 \",\"pages\":\"Article 106655\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003391\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003391","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

河流温度控制着各种影响生态系统、人类健康和经济活动的物理和生物过程。我们使用42年(1979-2021)的数据,使用循环图卷积网络预测美国邻近地区50,000条河流的河流温度的每日汇总统计数据。我们全面记录了所有河段和河流类型(例如,水库或地下水影响)的性能,作为未来改进的基准。该模型的水平RMSE为<;2°C,预测区间为90%,其中包含90.7%的观测值。我们还评估了该模型如何捕捉生态相关指标的变异性(例如,年7天最大值的R2 = 0.76;超过25°C的天数的R2 = 0.75)。由于输入集有限,该模型并不优于最先进的机器学习成果(例如,RMSE≤1.5°C),但确实提供了迄今为止空间最完整的建模来支持水资源可用性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluation of daily stream temperature predictions (1979–2021) across the contiguous United States using a spatiotemporal aware machine learning algorithm

Evaluation of daily stream temperature predictions (1979–2021) across the contiguous United States using a spatiotemporal aware machine learning algorithm
Stream temperature controls a variety of physical and biological processes that affect ecosystems, human health, and economic activities. We used 42 years (1979–2021) of data to predict daily summary statistics of stream temperature across >50,000 stream reaches in the contiguous United States using a recurrent graph convolution network. We comprehensively documented the performance – both across all reaches and by stream type (e.g., reservoir or groundwater influence) – as a baseline for future improvement. The model showed reach-level RMSE of <2 °C with 90 % prediction intervals that contain 90.7 % of observations. We also assessed how the model captured variability in ecologically relevant metrics (e.g., R2 for annual 7-day maximum = 0.76; R2 for days exceeding 25 °C = 0.75). This model does not outperform state-of-the-art machine learning efforts (e.g., RMSE ≤1.5 °C) due to a limited input set but does provide the most spatially complete modeling to date to support water availability assessments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信