用于高效低品位热收集的无源辐射调制纤维素热电组件

IF 12.5 1区 化学 Q1 CHEMISTRY, APPLIED
Hexi Zhang , Yuxi Chen , Gengyang Chen , Gonghua Hong , Lei Li , Qing Qu
{"title":"用于高效低品位热收集的无源辐射调制纤维素热电组件","authors":"Hexi Zhang ,&nbsp;Yuxi Chen ,&nbsp;Gengyang Chen ,&nbsp;Gonghua Hong ,&nbsp;Lei Li ,&nbsp;Qing Qu","doi":"10.1016/j.carbpol.2025.124274","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient conversion of low-grade waste heat into sustainable electricity is essential for advancing thermoelectric energy harvesting technologies. However, maintaining a stable temperature gradient and achieving scalable fabrication remain critical challenges. To address these challenges, this study proposes a self-assembled radiation-modulated thermoelectric strategy for constructing a biomass-based thermoelectric assembly. This system, based on cellulose nanofibril (CNF), integrates a thermoelectric gel with a passive radiation-cooling layer, enhancing thermoelectric performance by maintaining a temperature gradient of 9.9 K, leveraging radiative cooling at high solar irradiance. The prepared radiative cooling layer has 96.23 % solar reflectivity. The developed thermoelectric assembly achieves a high ionic thermovoltage of 41.01 mV K<sup>−1</sup>, an impressive ionic figure of merit (ZT<sub>i</sub>) of 1.42. In addition, the addition of MXene gives the material an impressive 38.18 dB electromagnetic interference (EMI) shielding efficiency, effectively improving the overall operational stability of the device. This study not only provides an innovative and efficient strategy for converting low-grade waste heat but also demonstrates the significance of integrating radiative cooling to optimize thermoelectric conversion. Furthermore, it offers a scalable and eco-friendly approach for future thermoelectric applications.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"368 ","pages":"Article 124274"},"PeriodicalIF":12.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive radiation-modulated cellulose-based thermoelectric assemblies for efficient low-grade heat harvesting\",\"authors\":\"Hexi Zhang ,&nbsp;Yuxi Chen ,&nbsp;Gengyang Chen ,&nbsp;Gonghua Hong ,&nbsp;Lei Li ,&nbsp;Qing Qu\",\"doi\":\"10.1016/j.carbpol.2025.124274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient conversion of low-grade waste heat into sustainable electricity is essential for advancing thermoelectric energy harvesting technologies. However, maintaining a stable temperature gradient and achieving scalable fabrication remain critical challenges. To address these challenges, this study proposes a self-assembled radiation-modulated thermoelectric strategy for constructing a biomass-based thermoelectric assembly. This system, based on cellulose nanofibril (CNF), integrates a thermoelectric gel with a passive radiation-cooling layer, enhancing thermoelectric performance by maintaining a temperature gradient of 9.9 K, leveraging radiative cooling at high solar irradiance. The prepared radiative cooling layer has 96.23 % solar reflectivity. The developed thermoelectric assembly achieves a high ionic thermovoltage of 41.01 mV K<sup>−1</sup>, an impressive ionic figure of merit (ZT<sub>i</sub>) of 1.42. In addition, the addition of MXene gives the material an impressive 38.18 dB electromagnetic interference (EMI) shielding efficiency, effectively improving the overall operational stability of the device. This study not only provides an innovative and efficient strategy for converting low-grade waste heat but also demonstrates the significance of integrating radiative cooling to optimize thermoelectric conversion. Furthermore, it offers a scalable and eco-friendly approach for future thermoelectric applications.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"368 \",\"pages\":\"Article 124274\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861725010598\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725010598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

将低品位废热有效转化为可持续电力是推进热电能量收集技术的关键。然而,保持稳定的温度梯度和实现可扩展的制造仍然是关键的挑战。为了解决这些挑战,本研究提出了一种自组装辐射调制热电策略,用于构建基于生物质的热电组件。该系统基于纤维素纳米纤维(CNF),将热电凝胶与被动辐射冷却层集成在一起,通过保持9.9 K的温度梯度来增强热电性能,利用高太阳辐照度下的辐射冷却。所制备的辐射冷却层的太阳反射率为96.23%。所开发的热电组件实现了41.01 mV K−1的高离子热电压,令人印象深刻的离子品质系数(ZTi)为1.42。此外,MXene的加入使该材料具有令人印象深刻的38.18 dB电磁干扰(EMI)屏蔽效率,有效提高了器件的整体运行稳定性。本研究不仅为低品位废热转化提供了一种创新、高效的策略,也证明了集成辐射冷却优化热电转化的意义。此外,它为未来的热电应用提供了可扩展和环保的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Passive radiation-modulated cellulose-based thermoelectric assemblies for efficient low-grade heat harvesting

Passive radiation-modulated cellulose-based thermoelectric assemblies for efficient low-grade heat harvesting
The efficient conversion of low-grade waste heat into sustainable electricity is essential for advancing thermoelectric energy harvesting technologies. However, maintaining a stable temperature gradient and achieving scalable fabrication remain critical challenges. To address these challenges, this study proposes a self-assembled radiation-modulated thermoelectric strategy for constructing a biomass-based thermoelectric assembly. This system, based on cellulose nanofibril (CNF), integrates a thermoelectric gel with a passive radiation-cooling layer, enhancing thermoelectric performance by maintaining a temperature gradient of 9.9 K, leveraging radiative cooling at high solar irradiance. The prepared radiative cooling layer has 96.23 % solar reflectivity. The developed thermoelectric assembly achieves a high ionic thermovoltage of 41.01 mV K−1, an impressive ionic figure of merit (ZTi) of 1.42. In addition, the addition of MXene gives the material an impressive 38.18 dB electromagnetic interference (EMI) shielding efficiency, effectively improving the overall operational stability of the device. This study not only provides an innovative and efficient strategy for converting low-grade waste heat but also demonstrates the significance of integrating radiative cooling to optimize thermoelectric conversion. Furthermore, it offers a scalable and eco-friendly approach for future thermoelectric applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信