Jiaqi Li , Wangzheqi Zhang , Yan Liao , Yanhao Qiu , Yalin Zhu , Xiaomin Zhang , Changli Wang
{"title":"神经解码可靠性:脑机接口技术在神经系统疾病治疗中的突破和潜力","authors":"Jiaqi Li , Wangzheqi Zhang , Yan Liao , Yanhao Qiu , Yalin Zhu , Xiaomin Zhang , Changli Wang","doi":"10.1016/j.plrev.2025.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>Neurological disorders such as Parkinson's disease, stroke, and epilepsy frequently result in irreversible disability. Brain–computer interface (BCI) technologies offer the promise of recovering or replacing impaired sensory, motor, and cognitive functions by directly stimulating cortical activity or by converting self-generated cortical activity into commands for external assistive devices. In-depth studies of cerebral cortex connectivity, function and neural hierarchical coding mechanisms can provide novel solutions for BCI-based treatments. This review summarizes the fundamental principles and history of BCI technology and current research progress, including the utilization of known cortical functions and the potential impact of newly discovered cortical functions on the future development of BCI-based applications. The article then systematically reviews the application of BCI technology for the treatment of motor, cognitive, and psychiatric disorders, innovative uses of hydrogels and carbon nanomaterials in BCI systems, and the current limitations and future research directions of BCI systems with respect to the reliability of neural decoding. This article aims to provide clinicians and researchers with the latest progress and a comprehensive overview of BCI applications for diagnosing and treating neurological diseases from in-depth studies on cerebral cortex structure and function, and to propose potential future applications based on interdisciplinary approaches, especially in enhancing the reliability of neural decoding.</div></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"55 ","pages":"Pages 1-40"},"PeriodicalIF":14.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural decoding reliability: Breakthroughs and potential of brain–computer interfaces technologies in the treatment of neurological diseases\",\"authors\":\"Jiaqi Li , Wangzheqi Zhang , Yan Liao , Yanhao Qiu , Yalin Zhu , Xiaomin Zhang , Changli Wang\",\"doi\":\"10.1016/j.plrev.2025.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurological disorders such as Parkinson's disease, stroke, and epilepsy frequently result in irreversible disability. Brain–computer interface (BCI) technologies offer the promise of recovering or replacing impaired sensory, motor, and cognitive functions by directly stimulating cortical activity or by converting self-generated cortical activity into commands for external assistive devices. In-depth studies of cerebral cortex connectivity, function and neural hierarchical coding mechanisms can provide novel solutions for BCI-based treatments. This review summarizes the fundamental principles and history of BCI technology and current research progress, including the utilization of known cortical functions and the potential impact of newly discovered cortical functions on the future development of BCI-based applications. The article then systematically reviews the application of BCI technology for the treatment of motor, cognitive, and psychiatric disorders, innovative uses of hydrogels and carbon nanomaterials in BCI systems, and the current limitations and future research directions of BCI systems with respect to the reliability of neural decoding. This article aims to provide clinicians and researchers with the latest progress and a comprehensive overview of BCI applications for diagnosing and treating neurological diseases from in-depth studies on cerebral cortex structure and function, and to propose potential future applications based on interdisciplinary approaches, especially in enhancing the reliability of neural decoding.</div></div>\",\"PeriodicalId\":403,\"journal\":{\"name\":\"Physics of Life Reviews\",\"volume\":\"55 \",\"pages\":\"Pages 1-40\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Life Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571064525001265\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571064525001265","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Neural decoding reliability: Breakthroughs and potential of brain–computer interfaces technologies in the treatment of neurological diseases
Neurological disorders such as Parkinson's disease, stroke, and epilepsy frequently result in irreversible disability. Brain–computer interface (BCI) technologies offer the promise of recovering or replacing impaired sensory, motor, and cognitive functions by directly stimulating cortical activity or by converting self-generated cortical activity into commands for external assistive devices. In-depth studies of cerebral cortex connectivity, function and neural hierarchical coding mechanisms can provide novel solutions for BCI-based treatments. This review summarizes the fundamental principles and history of BCI technology and current research progress, including the utilization of known cortical functions and the potential impact of newly discovered cortical functions on the future development of BCI-based applications. The article then systematically reviews the application of BCI technology for the treatment of motor, cognitive, and psychiatric disorders, innovative uses of hydrogels and carbon nanomaterials in BCI systems, and the current limitations and future research directions of BCI systems with respect to the reliability of neural decoding. This article aims to provide clinicians and researchers with the latest progress and a comprehensive overview of BCI applications for diagnosing and treating neurological diseases from in-depth studies on cerebral cortex structure and function, and to propose potential future applications based on interdisciplinary approaches, especially in enhancing the reliability of neural decoding.
期刊介绍:
Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.