解脂耶氏菌的合成潜力:创新基因表达工具

IF 5.2 2区 生物学
Xiaoqin Liu, Qingsheng Qi
{"title":"解脂耶氏菌的合成潜力:创新基因表达工具","authors":"Xiaoqin Liu,&nbsp;Qingsheng Qi","doi":"10.1111/1751-7915.70185","DOIUrl":null,"url":null,"abstract":"<p><i>Yarrowia lipolytica</i>, with its robust lipid metabolism capabilities, efficient secretion system and generally recognised as safe (GRAS) status, has become a highly promising microbial chassis in synthetic biology. However, compared with model microorganisms such as <i>Saccharomyces cerevisiae</i>, the underdevelopment of gene expression tools in <i>Y. lipolytica</i> has become a critical bottleneck, limiting its industrial application. Currently, its core tools face two critical challenges: promoters with limited dynamic regulatory capacity, leading to metabolic flux imbalance; and gene editing systems plagued by low efficiency and poor multiplex compatibility. This opinion article focuses on these two pivotal directions to dissect their technical bottlenecks and propose innovative solutions: constructing dynamic transcriptional regulatory modules through machine learning guided design and synthetic biology approaches and developing orthogonal CRISPR systems and multiplex editing platforms.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70185","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Synthetic Potential of Yarrowia lipolytica: Innovating Gene Expression Tools\",\"authors\":\"Xiaoqin Liu,&nbsp;Qingsheng Qi\",\"doi\":\"10.1111/1751-7915.70185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Yarrowia lipolytica</i>, with its robust lipid metabolism capabilities, efficient secretion system and generally recognised as safe (GRAS) status, has become a highly promising microbial chassis in synthetic biology. However, compared with model microorganisms such as <i>Saccharomyces cerevisiae</i>, the underdevelopment of gene expression tools in <i>Y. lipolytica</i> has become a critical bottleneck, limiting its industrial application. Currently, its core tools face two critical challenges: promoters with limited dynamic regulatory capacity, leading to metabolic flux imbalance; and gene editing systems plagued by low efficiency and poor multiplex compatibility. This opinion article focuses on these two pivotal directions to dissect their technical bottlenecks and propose innovative solutions: constructing dynamic transcriptional regulatory modules through machine learning guided design and synthetic biology approaches and developing orthogonal CRISPR systems and multiplex editing platforms.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 8\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70185\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70185","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脂质体耶氏菌以其强大的脂质代谢能力、高效的分泌系统和公认的安全(GRAS)地位,已成为合成生物学中极具发展前景的微生物基础。然而,与酿酒酵母等模式微生物相比,聚脂Y. lipolytica基因表达工具的不完善已成为制约其产业化应用的关键瓶颈。目前,其核心工具面临两个关键挑战:启动子动态调控能力有限,导致代谢通量失衡;基因编辑系统效率低,多路兼容能力差。本文将围绕这两个关键方向,剖析其技术瓶颈并提出创新解决方案:通过机器学习引导设计和合成生物学方法构建动态转录调控模块,开发正交CRISPR系统和多重编辑平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking the Synthetic Potential of Yarrowia lipolytica: Innovating Gene Expression Tools

Unlocking the Synthetic Potential of Yarrowia lipolytica: Innovating Gene Expression Tools

Yarrowia lipolytica, with its robust lipid metabolism capabilities, efficient secretion system and generally recognised as safe (GRAS) status, has become a highly promising microbial chassis in synthetic biology. However, compared with model microorganisms such as Saccharomyces cerevisiae, the underdevelopment of gene expression tools in Y. lipolytica has become a critical bottleneck, limiting its industrial application. Currently, its core tools face two critical challenges: promoters with limited dynamic regulatory capacity, leading to metabolic flux imbalance; and gene editing systems plagued by low efficiency and poor multiplex compatibility. This opinion article focuses on these two pivotal directions to dissect their technical bottlenecks and propose innovative solutions: constructing dynamic transcriptional regulatory modules through machine learning guided design and synthetic biology approaches and developing orthogonal CRISPR systems and multiplex editing platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信