{"title":"DGFE-Mamba:基于mamba的二维图像分割网络","authors":"Junding Sun, Kaixin Chen, Shuihua Wang, Yudong Zhang, Zhaozhao Xu, Xiaosheng Wu, Chaosheng Tang","doi":"10.1007/s42235-025-00711-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of medical image processing, combining global and local relationship modeling constitutes an effective strategy for precise segmentation. Prior research has established the validity of Convolutional Neural Networks (CNN) in modeling local relationships. Conversely, Transformers have demonstrated their capability to effectively capture global contextual information. However, when utilized to address CNNs’ limitations in modeling global relationships, Transformers are hindered by substantial computational complexity. To address this issue, we introduce Mamba, a State-Space Model (SSM) that exhibits exceptional proficiency in modeling long-range dependencies in sequential data. Given Mamba’s demonstrated potential in 2D medical image segmentation in previous studies, we have designed a Dual-encoder Global-local Feature Extraction Network based on Mamba, termed DGFE-Mamba, to accurately capture and fuse long-range dependencies and local dependencies within multi-scale features. Compared to Transformer-based methods, the DGFE-Mamba model excels in comprehensive feature modeling and demonstrates significantly improved segmentation accuracy. To validate the effectiveness and practicality of DGFE-Mamba, we conducted tests on the Automatic Cardiac Diagnosis Challenge (ACDC) dataset, the Synapse multi-organ CT abdominal segmentation dataset, and the Colorectal Cancer Clinic (CVC-ClinicDB) dataset. The results showed that DGFE-Mamba achieved Dice coefficients of 92.20, 83.67, and 94.13, respectively. These findings comprehensively validate the effectiveness and practicality of the proposed DGFE-Mamba architecture.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 4","pages":"2135 - 2150"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DGFE-Mamba: Mamba-Based 2D Image Segmentation Network\",\"authors\":\"Junding Sun, Kaixin Chen, Shuihua Wang, Yudong Zhang, Zhaozhao Xu, Xiaosheng Wu, Chaosheng Tang\",\"doi\":\"10.1007/s42235-025-00711-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the field of medical image processing, combining global and local relationship modeling constitutes an effective strategy for precise segmentation. Prior research has established the validity of Convolutional Neural Networks (CNN) in modeling local relationships. Conversely, Transformers have demonstrated their capability to effectively capture global contextual information. However, when utilized to address CNNs’ limitations in modeling global relationships, Transformers are hindered by substantial computational complexity. To address this issue, we introduce Mamba, a State-Space Model (SSM) that exhibits exceptional proficiency in modeling long-range dependencies in sequential data. Given Mamba’s demonstrated potential in 2D medical image segmentation in previous studies, we have designed a Dual-encoder Global-local Feature Extraction Network based on Mamba, termed DGFE-Mamba, to accurately capture and fuse long-range dependencies and local dependencies within multi-scale features. Compared to Transformer-based methods, the DGFE-Mamba model excels in comprehensive feature modeling and demonstrates significantly improved segmentation accuracy. To validate the effectiveness and practicality of DGFE-Mamba, we conducted tests on the Automatic Cardiac Diagnosis Challenge (ACDC) dataset, the Synapse multi-organ CT abdominal segmentation dataset, and the Colorectal Cancer Clinic (CVC-ClinicDB) dataset. The results showed that DGFE-Mamba achieved Dice coefficients of 92.20, 83.67, and 94.13, respectively. These findings comprehensively validate the effectiveness and practicality of the proposed DGFE-Mamba architecture.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"22 4\",\"pages\":\"2135 - 2150\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-025-00711-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-025-00711-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
In the field of medical image processing, combining global and local relationship modeling constitutes an effective strategy for precise segmentation. Prior research has established the validity of Convolutional Neural Networks (CNN) in modeling local relationships. Conversely, Transformers have demonstrated their capability to effectively capture global contextual information. However, when utilized to address CNNs’ limitations in modeling global relationships, Transformers are hindered by substantial computational complexity. To address this issue, we introduce Mamba, a State-Space Model (SSM) that exhibits exceptional proficiency in modeling long-range dependencies in sequential data. Given Mamba’s demonstrated potential in 2D medical image segmentation in previous studies, we have designed a Dual-encoder Global-local Feature Extraction Network based on Mamba, termed DGFE-Mamba, to accurately capture and fuse long-range dependencies and local dependencies within multi-scale features. Compared to Transformer-based methods, the DGFE-Mamba model excels in comprehensive feature modeling and demonstrates significantly improved segmentation accuracy. To validate the effectiveness and practicality of DGFE-Mamba, we conducted tests on the Automatic Cardiac Diagnosis Challenge (ACDC) dataset, the Synapse multi-organ CT abdominal segmentation dataset, and the Colorectal Cancer Clinic (CVC-ClinicDB) dataset. The results showed that DGFE-Mamba achieved Dice coefficients of 92.20, 83.67, and 94.13, respectively. These findings comprehensively validate the effectiveness and practicality of the proposed DGFE-Mamba architecture.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.