MXene复合材料的仿生增强:单宁酸和tempo氧化纤维素纳米纤维增强机械和氧化稳定性

IF 3.4 4区 工程技术 Q2 POLYMER SCIENCE
Yeonghyeon Lee, Yeongbeom Hong, Bong Sup Shim
{"title":"MXene复合材料的仿生增强:单宁酸和tempo氧化纤维素纳米纤维增强机械和氧化稳定性","authors":"Yeonghyeon Lee,&nbsp;Yeongbeom Hong,&nbsp;Bong Sup Shim","doi":"10.1007/s13233-025-00395-6","DOIUrl":null,"url":null,"abstract":"<div><p>MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div><div><p>We integrated tannic acid (TA) and TEMPO-oxidized cellulose nanofibers (TOCN) with MXene to overcome its inherent poor oxidative stability and durability. The resulting MXene/TA/TOCN composite demonstrated enhanced stability in an acidic solution and under ultrasonication, highlighting our approach to address its critical limitations</p></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 8","pages":"1085 - 1095"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired reinforcement of MXene composites: tannic acid and TEMPO-oxidized cellulose nanofibers for enhanced mechanical and oxidation stability\",\"authors\":\"Yeonghyeon Lee,&nbsp;Yeongbeom Hong,&nbsp;Bong Sup Shim\",\"doi\":\"10.1007/s13233-025-00395-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div><div><p>We integrated tannic acid (TA) and TEMPO-oxidized cellulose nanofibers (TOCN) with MXene to overcome its inherent poor oxidative stability and durability. The resulting MXene/TA/TOCN composite demonstrated enhanced stability in an acidic solution and under ultrasonication, highlighting our approach to address its critical limitations</p></div></div></figure></div></div>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"33 8\",\"pages\":\"1085 - 1095\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13233-025-00395-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-025-00395-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

MXenes,二维(2D)金属碳化物和氮化物具有优异的导电性,亲水性和可调表面特性,使其在储能,催化和传感方面的应用具有很高的吸引力。然而,MXenes(例如Ti3C2Tx)存在机械脆性和较差的氧化稳定性,限制了其适用性和长期耐久性。在这项研究中,我们提出了一种将MXene与从被囊草和单宁酸(TA)中提取的tempo氧化纤维素纳米纤维(TOCN)结合的复合材料。由于被囊体的高结晶度,TOCN具有较高的机械强度,而tempo介导氧化引入的羧基促进了与MXene层的界面结合。TA是一种天然多酚,具有优异的抗氧化性,通过强氢键将MXene和TOCN进一步结合。制备的MXene/TA/TOCN复合材料在保持良好电导率(81.4 S/cm)的同时,机械强度显著提高,达到98.3 MPa,抗氧化性能显著提高。这种TA和TOCN的协同集成突出了MXene/TA/TOCN在储能设备和灵活电子应用方面的潜力。摘要我们将单宁酸(TA)和tempo氧化纤维素纳米纤维(TOCN)与MXene结合,以克服其固有的氧化稳定性和耐久性差。所得到的MXene/TA/TOCN复合材料在酸性溶液和超声作用下的稳定性增强,突出了我们解决其关键局限性的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired reinforcement of MXene composites: tannic acid and TEMPO-oxidized cellulose nanofibers for enhanced mechanical and oxidation stability

MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti3C2Tx) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications.

Graphical abstract

We integrated tannic acid (TA) and TEMPO-oxidized cellulose nanofibers (TOCN) with MXene to overcome its inherent poor oxidative stability and durability. The resulting MXene/TA/TOCN composite demonstrated enhanced stability in an acidic solution and under ultrasonication, highlighting our approach to address its critical limitations

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Research
Macromolecular Research 工程技术-高分子科学
CiteScore
4.70
自引率
8.30%
发文量
100
审稿时长
1.3 months
期刊介绍: Original research on all aspects of polymer science, engineering and technology, including nanotechnology Presents original research articles on all aspects of polymer science, engineering and technology Coverage extends to such topics as nanotechnology, biotechnology and information technology The English-language journal of the Polymer Society of Korea Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信