高效光电器件用空位有序钙钛矿Rb2SnBr6的合成与表征

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Dhaifallah R. Almalawi, Mohamed Bouzidi, Idris H. Smaili, N. I. Aljuraide, Ali Alzahrani, A. Saftah, Dalal Alzahrani, Mohamed Ben Bechir
{"title":"高效光电器件用空位有序钙钛矿Rb2SnBr6的合成与表征","authors":"Dhaifallah R. Almalawi,&nbsp;Mohamed Bouzidi,&nbsp;Idris H. Smaili,&nbsp;N. I. Aljuraide,&nbsp;Ali Alzahrani,&nbsp;A. Saftah,&nbsp;Dalal Alzahrani,&nbsp;Mohamed Ben Bechir","doi":"10.1007/s10854-025-15546-9","DOIUrl":null,"url":null,"abstract":"<div><p>Halide double perovskites have garnered significant attention due to their promising structural stability and optoelectronic properties. In this study, we investigate the structural, microstructural, compositional, thermal, optical, and electrical properties of Rb<sub>2</sub>SnBr<sub>6</sub>, a vacancy-ordered double perovskite, to assess its potential for optoelectronic applications. Powder X-ray diffraction (PXRD) confirms its cubic <span>\\(\\text{Fm}\\overline{3}\\text{m }\\)</span> phase with a lattice parameter of 10.5781 Å, consistent with previous reports. STEM imaging and EDS analysis further confirm the homogeneous microstructure and elemental composition, supporting the high phase purity of the material. Thermogravimetric analysis (TGA) reveals thermal stability up to 300 ℃, followed by two major decomposition stages at 350–450 ℃ and above 680 ℃, with a stable residual fraction at 900 ℃. Optical characterization via UV–Vis absorption spectroscopy determines a direct bandgap of 2.49 ± 0.02 eV, while Urbach energy analysis yields a value of 0.649 ± 0.001 eV. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements confirm a strong emission in the visible range, with an enhanced intensity under illumination, suggesting a possible positive photoconductivity effect. Raman spectroscopy corroborates the structural integrity of the material under varying light conditions. Impedance spectroscopy (IS) analysis shows a negative temperature coefficient of resistance (NTCR) effect, with increased conductivity under illumination. The conduction mechanism shifts from Quantum Mechanical Tunneling (QMT) in darkness to Correlated Barrier Hopping (CBH) under illumination, further confirming the role of light in charge transport. These findings position Rb<sub>2</sub>SnBr<sub>6</sub> as a robust and efficient material for optoelectronic devices, including light-emitting diodes (LEDs) and photonic sensors.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 24","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of Rb2SnBr6: a vacancy-ordered perovskite for efficient optoelectronic devices\",\"authors\":\"Dhaifallah R. Almalawi,&nbsp;Mohamed Bouzidi,&nbsp;Idris H. Smaili,&nbsp;N. I. Aljuraide,&nbsp;Ali Alzahrani,&nbsp;A. Saftah,&nbsp;Dalal Alzahrani,&nbsp;Mohamed Ben Bechir\",\"doi\":\"10.1007/s10854-025-15546-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Halide double perovskites have garnered significant attention due to their promising structural stability and optoelectronic properties. In this study, we investigate the structural, microstructural, compositional, thermal, optical, and electrical properties of Rb<sub>2</sub>SnBr<sub>6</sub>, a vacancy-ordered double perovskite, to assess its potential for optoelectronic applications. Powder X-ray diffraction (PXRD) confirms its cubic <span>\\\\(\\\\text{Fm}\\\\overline{3}\\\\text{m }\\\\)</span> phase with a lattice parameter of 10.5781 Å, consistent with previous reports. STEM imaging and EDS analysis further confirm the homogeneous microstructure and elemental composition, supporting the high phase purity of the material. Thermogravimetric analysis (TGA) reveals thermal stability up to 300 ℃, followed by two major decomposition stages at 350–450 ℃ and above 680 ℃, with a stable residual fraction at 900 ℃. Optical characterization via UV–Vis absorption spectroscopy determines a direct bandgap of 2.49 ± 0.02 eV, while Urbach energy analysis yields a value of 0.649 ± 0.001 eV. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements confirm a strong emission in the visible range, with an enhanced intensity under illumination, suggesting a possible positive photoconductivity effect. Raman spectroscopy corroborates the structural integrity of the material under varying light conditions. Impedance spectroscopy (IS) analysis shows a negative temperature coefficient of resistance (NTCR) effect, with increased conductivity under illumination. The conduction mechanism shifts from Quantum Mechanical Tunneling (QMT) in darkness to Correlated Barrier Hopping (CBH) under illumination, further confirming the role of light in charge transport. These findings position Rb<sub>2</sub>SnBr<sub>6</sub> as a robust and efficient material for optoelectronic devices, including light-emitting diodes (LEDs) and photonic sensors.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 24\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-15546-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-15546-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

卤化物双钙钛矿因其具有良好的结构稳定性和光电性能而受到广泛关注。在这项研究中,我们研究了空位有序双钙钛矿Rb2SnBr6的结构、微观结构、组成、热、光学和电学性质,以评估其光电应用潜力。粉末x射线衍射(PXRD)证实其立方相\(\text{Fm}\overline{3}\text{m }\),晶格参数为10.5781 Å,与先前报道一致。STEM成像和EDS分析进一步证实了均匀的微观结构和元素组成,支持了材料的高相纯度。热重分析(TGA)表明,在300℃前具有热稳定性,在350 ~ 450℃和680℃以上有两个主要分解阶段,900℃时残余分数稳定。通过紫外可见吸收光谱的光学表征确定了直接带隙为2.49±0.02 eV,而Urbach能量分析得出的值为0.649±0.001 eV。光致发光(PL)和时间分辨光致发光(TRPL)测量证实了在可见光范围内的强发射,在照明下强度增强,表明可能存在正光导效应。拉曼光谱证实了材料在不同光条件下的结构完整性。阻抗谱(IS)分析表明,在光照下,电阻温度系数(NTCR)为负,电导率增加。从黑暗条件下的量子力学隧穿(QMT)转变为光照条件下的相关垒跳(CBH),进一步证实了光在电荷输运中的作用。这些发现将Rb2SnBr6定位为光电子器件(包括发光二极管(led)和光子传感器)的坚固高效材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and characterization of Rb2SnBr6: a vacancy-ordered perovskite for efficient optoelectronic devices

Halide double perovskites have garnered significant attention due to their promising structural stability and optoelectronic properties. In this study, we investigate the structural, microstructural, compositional, thermal, optical, and electrical properties of Rb2SnBr6, a vacancy-ordered double perovskite, to assess its potential for optoelectronic applications. Powder X-ray diffraction (PXRD) confirms its cubic \(\text{Fm}\overline{3}\text{m }\) phase with a lattice parameter of 10.5781 Å, consistent with previous reports. STEM imaging and EDS analysis further confirm the homogeneous microstructure and elemental composition, supporting the high phase purity of the material. Thermogravimetric analysis (TGA) reveals thermal stability up to 300 ℃, followed by two major decomposition stages at 350–450 ℃ and above 680 ℃, with a stable residual fraction at 900 ℃. Optical characterization via UV–Vis absorption spectroscopy determines a direct bandgap of 2.49 ± 0.02 eV, while Urbach energy analysis yields a value of 0.649 ± 0.001 eV. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements confirm a strong emission in the visible range, with an enhanced intensity under illumination, suggesting a possible positive photoconductivity effect. Raman spectroscopy corroborates the structural integrity of the material under varying light conditions. Impedance spectroscopy (IS) analysis shows a negative temperature coefficient of resistance (NTCR) effect, with increased conductivity under illumination. The conduction mechanism shifts from Quantum Mechanical Tunneling (QMT) in darkness to Correlated Barrier Hopping (CBH) under illumination, further confirming the role of light in charge transport. These findings position Rb2SnBr6 as a robust and efficient material for optoelectronic devices, including light-emitting diodes (LEDs) and photonic sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信