金属支撑固体氧化物燃料电池的电催化技术进展:提高生物燃料动力移动应用的效率和耐久性

IF 5.5 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ganesan Subbiah, Sasmeeta Tripathy, J. Guntaj, Nandagopal Kaliappan, Beemkumar Nagappan, Devanshu J. Patel, Priya K. Kamakshi
{"title":"金属支撑固体氧化物燃料电池的电催化技术进展:提高生物燃料动力移动应用的效率和耐久性","authors":"Ganesan Subbiah,&nbsp;Sasmeeta Tripathy,&nbsp;J. Guntaj,&nbsp;Nandagopal Kaliappan,&nbsp;Beemkumar Nagappan,&nbsp;Devanshu J. Patel,&nbsp;Priya K. Kamakshi","doi":"10.1007/s40243-025-00322-w","DOIUrl":null,"url":null,"abstract":"<div><p>This review critically evaluates recent advancements in electrocatalytic technologies aimed at enhancing the efficiency of metal-supported Solid Oxide Fuel Cells (SOFCs) for biofuel-powered mobility applications. The study aims to elucidate the impact of these innovations on the performance, durability, and stability of SOFCs in transportation and portable energy systems. By integrating experimental findings, computational simulations, and practical applications, this work highlights the pivotal role of advanced electrocatalysts in optimizing SOFC functionality. Key developments, such as the incorporation of perovskite-based materials and exsolved nanoparticle catalysts, have demonstrated remarkable improvements in electrochemical performance and operational longevity. Specifically, lanthanum-strontium cobalt ferrite (LSCF)-based cathodes demonstrated a 30% increase in power output and a 25% enhancement in long-term stability under biofuel operating conditions. Furthermore, computational modeling has played a crucial role in refining catalyst designs, achieving a 45% reduction in degradation rates. These advancements underscore the potential of biofuel-driven SOFCs as a sustainable energy solution for transportation. However, future research must address challenges related to scalability, cost-effectiveness, and economic competitiveness to fully realize their practical implementation.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 3","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00322-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Advancements in electrocatalytic technologies for metal-supported solid oxide fuel cells: enhancing efficiency and durability for biofuel-powered mobility applications\",\"authors\":\"Ganesan Subbiah,&nbsp;Sasmeeta Tripathy,&nbsp;J. Guntaj,&nbsp;Nandagopal Kaliappan,&nbsp;Beemkumar Nagappan,&nbsp;Devanshu J. Patel,&nbsp;Priya K. Kamakshi\",\"doi\":\"10.1007/s40243-025-00322-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review critically evaluates recent advancements in electrocatalytic technologies aimed at enhancing the efficiency of metal-supported Solid Oxide Fuel Cells (SOFCs) for biofuel-powered mobility applications. The study aims to elucidate the impact of these innovations on the performance, durability, and stability of SOFCs in transportation and portable energy systems. By integrating experimental findings, computational simulations, and practical applications, this work highlights the pivotal role of advanced electrocatalysts in optimizing SOFC functionality. Key developments, such as the incorporation of perovskite-based materials and exsolved nanoparticle catalysts, have demonstrated remarkable improvements in electrochemical performance and operational longevity. Specifically, lanthanum-strontium cobalt ferrite (LSCF)-based cathodes demonstrated a 30% increase in power output and a 25% enhancement in long-term stability under biofuel operating conditions. Furthermore, computational modeling has played a crucial role in refining catalyst designs, achieving a 45% reduction in degradation rates. These advancements underscore the potential of biofuel-driven SOFCs as a sustainable energy solution for transportation. However, future research must address challenges related to scalability, cost-effectiveness, and economic competitiveness to fully realize their practical implementation.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00322-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00322-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00322-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了电催化技术的最新进展,旨在提高金属支撑固体氧化物燃料电池(sofc)在生物燃料动力移动应用中的效率。该研究旨在阐明这些创新对运输和便携式能源系统中sofc的性能、耐久性和稳定性的影响。通过整合实验结果、计算模拟和实际应用,这项工作突出了先进电催化剂在优化SOFC功能方面的关键作用。关键的发展,如钙钛矿基材料和溶解纳米颗粒催化剂的掺入,已经证明了电化学性能和使用寿命的显着改善。具体来说,基于镧锶钴铁氧体(LSCF)的阴极在生物燃料运行条件下的功率输出增加了30%,长期稳定性提高了25%。此外,计算模型在精炼催化剂设计中发挥了至关重要的作用,使降解率降低了45%。这些进步凸显了生物燃料驱动的sofc作为交通运输可持续能源解决方案的潜力。然而,未来的研究必须解决与可扩展性、成本效益和经济竞争力相关的挑战,以充分实现其实际实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements in electrocatalytic technologies for metal-supported solid oxide fuel cells: enhancing efficiency and durability for biofuel-powered mobility applications

This review critically evaluates recent advancements in electrocatalytic technologies aimed at enhancing the efficiency of metal-supported Solid Oxide Fuel Cells (SOFCs) for biofuel-powered mobility applications. The study aims to elucidate the impact of these innovations on the performance, durability, and stability of SOFCs in transportation and portable energy systems. By integrating experimental findings, computational simulations, and practical applications, this work highlights the pivotal role of advanced electrocatalysts in optimizing SOFC functionality. Key developments, such as the incorporation of perovskite-based materials and exsolved nanoparticle catalysts, have demonstrated remarkable improvements in electrochemical performance and operational longevity. Specifically, lanthanum-strontium cobalt ferrite (LSCF)-based cathodes demonstrated a 30% increase in power output and a 25% enhancement in long-term stability under biofuel operating conditions. Furthermore, computational modeling has played a crucial role in refining catalyst designs, achieving a 45% reduction in degradation rates. These advancements underscore the potential of biofuel-driven SOFCs as a sustainable energy solution for transportation. However, future research must address challenges related to scalability, cost-effectiveness, and economic competitiveness to fully realize their practical implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信