Zhongyu Wan, Guo-Hua Zhong, Ruiqin Zhang, Hai-Qing Lin
{"title":"“电极-载流子”预压缩理论","authors":"Zhongyu Wan, Guo-Hua Zhong, Ruiqin Zhang, Hai-Qing Lin","doi":"10.1007/s11433-025-2745-4","DOIUrl":null,"url":null,"abstract":"<div><p>Room-temperature superconductivity is predominantly observed in high-pressure hydrides, but faces a formidable hurdle: the tendency of these materials to decompose and forfeit their superconducting prowess upon pressure release. Consequently, stabilizing room-temperature superconductivity under ambient conditions has emerged as a pressing concern in solid-state physics. Electrides are unique compounds, possessing exceptional properties attributed to the clustering of high-energy excess electrons within the interstices of their lattices. Our theory outlines a general blueprint for achieving ambient superconductivity through the strategic insertion of hydrogen into the interstitial spaces of electride materials. This ingenious approach harnesses quasimolecular H<sub>2</sub> to sequester high-energy electrons, resulting in a substantial density of electronic states at the Fermi level and fostering robust electron-phonon coupling. We implemented this strategy within the realm of alkali metal electrides, fine-tuning their stability via carrier doping effects, grounded in rigorous quantum chemical analyses of pressure-induced chemical bonds. As a result, the KH<sub>6</sub> compound exhibits an exceptional superconducting transition temperature of 222 K at a modest 10 GPa, outperforming previously reported high-pressure superconductors like H<sub>3</sub>S (203 K at 155 GPa) and LaH<sub>10</sub> (250 K at 170 GPa). Furthermore, the hole-doped NaH<sub>6</sub> compound demonstrates superconductivity at ambient pressure with a remarkable <i>T</i><sub>c</sub> of 167 K, surpassing the previous record-holder HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>8</sub> with 134 K.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 10","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The theory of “electride-carrier” precompression\",\"authors\":\"Zhongyu Wan, Guo-Hua Zhong, Ruiqin Zhang, Hai-Qing Lin\",\"doi\":\"10.1007/s11433-025-2745-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Room-temperature superconductivity is predominantly observed in high-pressure hydrides, but faces a formidable hurdle: the tendency of these materials to decompose and forfeit their superconducting prowess upon pressure release. Consequently, stabilizing room-temperature superconductivity under ambient conditions has emerged as a pressing concern in solid-state physics. Electrides are unique compounds, possessing exceptional properties attributed to the clustering of high-energy excess electrons within the interstices of their lattices. Our theory outlines a general blueprint for achieving ambient superconductivity through the strategic insertion of hydrogen into the interstitial spaces of electride materials. This ingenious approach harnesses quasimolecular H<sub>2</sub> to sequester high-energy electrons, resulting in a substantial density of electronic states at the Fermi level and fostering robust electron-phonon coupling. We implemented this strategy within the realm of alkali metal electrides, fine-tuning their stability via carrier doping effects, grounded in rigorous quantum chemical analyses of pressure-induced chemical bonds. As a result, the KH<sub>6</sub> compound exhibits an exceptional superconducting transition temperature of 222 K at a modest 10 GPa, outperforming previously reported high-pressure superconductors like H<sub>3</sub>S (203 K at 155 GPa) and LaH<sub>10</sub> (250 K at 170 GPa). Furthermore, the hole-doped NaH<sub>6</sub> compound demonstrates superconductivity at ambient pressure with a remarkable <i>T</i><sub>c</sub> of 167 K, surpassing the previous record-holder HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>8</sub> with 134 K.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 10\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2745-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2745-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Room-temperature superconductivity is predominantly observed in high-pressure hydrides, but faces a formidable hurdle: the tendency of these materials to decompose and forfeit their superconducting prowess upon pressure release. Consequently, stabilizing room-temperature superconductivity under ambient conditions has emerged as a pressing concern in solid-state physics. Electrides are unique compounds, possessing exceptional properties attributed to the clustering of high-energy excess electrons within the interstices of their lattices. Our theory outlines a general blueprint for achieving ambient superconductivity through the strategic insertion of hydrogen into the interstitial spaces of electride materials. This ingenious approach harnesses quasimolecular H2 to sequester high-energy electrons, resulting in a substantial density of electronic states at the Fermi level and fostering robust electron-phonon coupling. We implemented this strategy within the realm of alkali metal electrides, fine-tuning their stability via carrier doping effects, grounded in rigorous quantum chemical analyses of pressure-induced chemical bonds. As a result, the KH6 compound exhibits an exceptional superconducting transition temperature of 222 K at a modest 10 GPa, outperforming previously reported high-pressure superconductors like H3S (203 K at 155 GPa) and LaH10 (250 K at 170 GPa). Furthermore, the hole-doped NaH6 compound demonstrates superconductivity at ambient pressure with a remarkable Tc of 167 K, surpassing the previous record-holder HgBa2Ca2Cu3O8 with 134 K.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.