Jean Gonzalez Silva;Twan Keijzer;Alexander Julian Gallo;Riccardo Ferrari;Jan-Willem van Wingerden
{"title":"基于多速率共识的大型风电场分布式控制","authors":"Jean Gonzalez Silva;Twan Keijzer;Alexander Julian Gallo;Riccardo Ferrari;Jan-Willem van Wingerden","doi":"10.1109/TCST.2025.3550033","DOIUrl":null,"url":null,"abstract":"High penetration of wind energy is pushing wind farms (WFs) to offer grid support capabilities, such as active power tracking. One of the main challenges in active power tracking for WFs is the interaction of wind turbines (WTs) through their wakes. This reduces the available wind in downstream WTs, leading them to saturation, while also affecting structural loading. With the increasing number of WTs in individual WFs, the computational and communication complexity of implementing centralized control architectures grows, posing challenges for real-world applications. In this article, we present a novel distributed control approach for active power tracking for WFs, namely multirate consensus-based distributed control (MCDC). The MCDC is designed to ensure that tracking errors caused by WT saturation are equally compensated throughout the WF, while only requiring local information exchanges between WTs. Furthermore, the proposed controller ensures that WT aerodynamic loading is balanced across the WF in a distributed manner. Finally, the overall power reference is distributed via a leader-follower consensus algorithm, resulting in a fully distributed approach. Our control approach facilitates the WF modularity and sparsity, which reduces the costs associated with control design and its applicability. Throughout this article, we demonstrate the effectiveness of the proposed MCDC through high-fidelity simulations, presenting performance comparable to the centralized control.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 5","pages":"1572-1585"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multirate Consensus-Based Distributed Control for Large-Scale Wind Farms\",\"authors\":\"Jean Gonzalez Silva;Twan Keijzer;Alexander Julian Gallo;Riccardo Ferrari;Jan-Willem van Wingerden\",\"doi\":\"10.1109/TCST.2025.3550033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High penetration of wind energy is pushing wind farms (WFs) to offer grid support capabilities, such as active power tracking. One of the main challenges in active power tracking for WFs is the interaction of wind turbines (WTs) through their wakes. This reduces the available wind in downstream WTs, leading them to saturation, while also affecting structural loading. With the increasing number of WTs in individual WFs, the computational and communication complexity of implementing centralized control architectures grows, posing challenges for real-world applications. In this article, we present a novel distributed control approach for active power tracking for WFs, namely multirate consensus-based distributed control (MCDC). The MCDC is designed to ensure that tracking errors caused by WT saturation are equally compensated throughout the WF, while only requiring local information exchanges between WTs. Furthermore, the proposed controller ensures that WT aerodynamic loading is balanced across the WF in a distributed manner. Finally, the overall power reference is distributed via a leader-follower consensus algorithm, resulting in a fully distributed approach. Our control approach facilitates the WF modularity and sparsity, which reduces the costs associated with control design and its applicability. Throughout this article, we demonstrate the effectiveness of the proposed MCDC through high-fidelity simulations, presenting performance comparable to the centralized control.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 5\",\"pages\":\"1572-1585\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948010/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948010/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Multirate Consensus-Based Distributed Control for Large-Scale Wind Farms
High penetration of wind energy is pushing wind farms (WFs) to offer grid support capabilities, such as active power tracking. One of the main challenges in active power tracking for WFs is the interaction of wind turbines (WTs) through their wakes. This reduces the available wind in downstream WTs, leading them to saturation, while also affecting structural loading. With the increasing number of WTs in individual WFs, the computational and communication complexity of implementing centralized control architectures grows, posing challenges for real-world applications. In this article, we present a novel distributed control approach for active power tracking for WFs, namely multirate consensus-based distributed control (MCDC). The MCDC is designed to ensure that tracking errors caused by WT saturation are equally compensated throughout the WF, while only requiring local information exchanges between WTs. Furthermore, the proposed controller ensures that WT aerodynamic loading is balanced across the WF in a distributed manner. Finally, the overall power reference is distributed via a leader-follower consensus algorithm, resulting in a fully distributed approach. Our control approach facilitates the WF modularity and sparsity, which reduces the costs associated with control design and its applicability. Throughout this article, we demonstrate the effectiveness of the proposed MCDC through high-fidelity simulations, presenting performance comparable to the centralized control.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.