具有嵌套信号时序逻辑规范的不确定系统的基于分解的MPC

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Jiarui Zhang;Penghong Lu;Gang Chen
{"title":"具有嵌套信号时序逻辑规范的不确定系统的基于分解的MPC","authors":"Jiarui Zhang;Penghong Lu;Gang Chen","doi":"10.1109/LCSYS.2025.3596501","DOIUrl":null,"url":null,"abstract":"In this letter, we tackle the complex problem of control synthesis for uncertain systems with dynamically nested tasks represented by signal temporal logic (STL) specifications. Traditional temporal logic control approaches typically consider non-nested specifications under deterministic systems, thereby limiting their applicability in more complex environments. To overcome these limitations, we propose a decomposition-based model predictive control (MPC) framework designed for linear systems affected by additive, bounded stochastic disturbances. Our approach first decomposes each nested STL specification into a series of atomic subtasks through nested specification resolution (NSR) approach, then we adopt a distributed shrinking horizon MPC (dSHMPC) strategy for each subtask to improve computational efficiency. The efficacy of the proposed method is illustrated through a robot simulation scenario.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2103-2108"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition-Based MPC for Uncertain Systems With Nested Signal Temporal Logic Specifications\",\"authors\":\"Jiarui Zhang;Penghong Lu;Gang Chen\",\"doi\":\"10.1109/LCSYS.2025.3596501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we tackle the complex problem of control synthesis for uncertain systems with dynamically nested tasks represented by signal temporal logic (STL) specifications. Traditional temporal logic control approaches typically consider non-nested specifications under deterministic systems, thereby limiting their applicability in more complex environments. To overcome these limitations, we propose a decomposition-based model predictive control (MPC) framework designed for linear systems affected by additive, bounded stochastic disturbances. Our approach first decomposes each nested STL specification into a series of atomic subtasks through nested specification resolution (NSR) approach, then we adopt a distributed shrinking horizon MPC (dSHMPC) strategy for each subtask to improve computational efficiency. The efficacy of the proposed method is illustrated through a robot simulation scenario.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"2103-2108\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11115089/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11115089/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们解决了不确定系统的复杂控制综合问题,这些系统具有由信号时序逻辑(STL)规范表示的动态嵌套任务。传统的时间逻辑控制方法通常考虑确定性系统下的非嵌套规范,从而限制了它们在更复杂环境中的适用性。为了克服这些限制,我们提出了一个基于分解的模型预测控制(MPC)框架,设计用于受加性有界随机干扰影响的线性系统。该方法首先通过嵌套规范解析(NSR)方法将每个嵌套的STL规范分解为一系列原子子任务,然后对每个子任务采用分布式收缩地平线MPC (dSHMPC)策略来提高计算效率。通过一个机器人仿真场景验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition-Based MPC for Uncertain Systems With Nested Signal Temporal Logic Specifications
In this letter, we tackle the complex problem of control synthesis for uncertain systems with dynamically nested tasks represented by signal temporal logic (STL) specifications. Traditional temporal logic control approaches typically consider non-nested specifications under deterministic systems, thereby limiting their applicability in more complex environments. To overcome these limitations, we propose a decomposition-based model predictive control (MPC) framework designed for linear systems affected by additive, bounded stochastic disturbances. Our approach first decomposes each nested STL specification into a series of atomic subtasks through nested specification resolution (NSR) approach, then we adopt a distributed shrinking horizon MPC (dSHMPC) strategy for each subtask to improve computational efficiency. The efficacy of the proposed method is illustrated through a robot simulation scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信