{"title":"优化配水网光伏板数量","authors":"Mirhan Ürkmez;Carsten Kallesøe;Jan Dimon Bendtsen;John Leth","doi":"10.1109/TCST.2025.3560173","DOIUrl":null,"url":null,"abstract":"The article introduces a procedure for determining an approximation of the optimal amount of photovoltaics (PVs) for powering water distribution networks (WDNs) through grid-connected PVs. The procedure aims to find the PV amount, minimizing the total expected cost of the WDN over the lifespan of the PVs. The approach follows an iterative process, starting with an initial estimate of the PV quantity and then calculating the total cost of WDN operation. To calculate the total cost of the WDN, we sample PV power profiles that represent the future production based on a probabilistic PV production model. Simulations are conducted assuming these sampled PV profiles power the WDN, and pump flow rates are determined using a control method designed for PV-powered WDNs. Following the simulations, the overall WDN cost is calculated. Since we lack access to derivative information, we employ the derivative-free Nelder-Mead method for iteratively adjusting the PV quantity to find an approximation of the optimal value. The procedure is applied for the WDN of Randers, a Danish town. By determining an approximation of the optimal quantity of PVs, we observe a 14.5% decrease in WDN costs compared to the scenario without PV installations, assuming a 25-year lifespan for the PV panels.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 5","pages":"1727-1742"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Photovoltaic Panel Quantity for Water Distribution Networks\",\"authors\":\"Mirhan Ürkmez;Carsten Kallesøe;Jan Dimon Bendtsen;John Leth\",\"doi\":\"10.1109/TCST.2025.3560173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article introduces a procedure for determining an approximation of the optimal amount of photovoltaics (PVs) for powering water distribution networks (WDNs) through grid-connected PVs. The procedure aims to find the PV amount, minimizing the total expected cost of the WDN over the lifespan of the PVs. The approach follows an iterative process, starting with an initial estimate of the PV quantity and then calculating the total cost of WDN operation. To calculate the total cost of the WDN, we sample PV power profiles that represent the future production based on a probabilistic PV production model. Simulations are conducted assuming these sampled PV profiles power the WDN, and pump flow rates are determined using a control method designed for PV-powered WDNs. Following the simulations, the overall WDN cost is calculated. Since we lack access to derivative information, we employ the derivative-free Nelder-Mead method for iteratively adjusting the PV quantity to find an approximation of the optimal value. The procedure is applied for the WDN of Randers, a Danish town. By determining an approximation of the optimal quantity of PVs, we observe a 14.5% decrease in WDN costs compared to the scenario without PV installations, assuming a 25-year lifespan for the PV panels.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 5\",\"pages\":\"1727-1742\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10982196/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10982196/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Optimizing Photovoltaic Panel Quantity for Water Distribution Networks
The article introduces a procedure for determining an approximation of the optimal amount of photovoltaics (PVs) for powering water distribution networks (WDNs) through grid-connected PVs. The procedure aims to find the PV amount, minimizing the total expected cost of the WDN over the lifespan of the PVs. The approach follows an iterative process, starting with an initial estimate of the PV quantity and then calculating the total cost of WDN operation. To calculate the total cost of the WDN, we sample PV power profiles that represent the future production based on a probabilistic PV production model. Simulations are conducted assuming these sampled PV profiles power the WDN, and pump flow rates are determined using a control method designed for PV-powered WDNs. Following the simulations, the overall WDN cost is calculated. Since we lack access to derivative information, we employ the derivative-free Nelder-Mead method for iteratively adjusting the PV quantity to find an approximation of the optimal value. The procedure is applied for the WDN of Randers, a Danish town. By determining an approximation of the optimal quantity of PVs, we observe a 14.5% decrease in WDN costs compared to the scenario without PV installations, assuming a 25-year lifespan for the PV panels.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.