相对熵的乌尔曼定理

IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Giulia Mazzola;David Sutter;Renato Renner
{"title":"相对熵的乌尔曼定理","authors":"Giulia Mazzola;David Sutter;Renato Renner","doi":"10.1109/TIT.2025.3591775","DOIUrl":null,"url":null,"abstract":"Uhlmann’s theorem states that, for any two quantum states <inline-formula> <tex-math>$\\rho _{AB}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\sigma _{A}$ </tex-math></inline-formula>, there exists an extension <inline-formula> <tex-math>$\\sigma _{AB}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$\\sigma _{A}$ </tex-math></inline-formula> such that the fidelity between <inline-formula> <tex-math>$\\rho _{AB}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\sigma _{AB}$ </tex-math></inline-formula> equals the fidelity between their reduced states <inline-formula> <tex-math>$\\rho _{A}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\sigma _{A}$ </tex-math></inline-formula>. In this work, we generalize Uhlmann’s theorem to <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-Rényi relative entropies for <inline-formula> <tex-math>$\\alpha \\in \\left [{{\\frac {1}{2},\\infty }}\\right]$ </tex-math></inline-formula>, a family of divergences that encompasses fidelity, relative entropy, and max-relative entropy corresponding to <inline-formula> <tex-math>$\\alpha =\\frac {1}{2}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$\\alpha =1$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\alpha =\\infty $ </tex-math></inline-formula>, respectively.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 9","pages":"7039-7051"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11090167","citationCount":"0","resultStr":"{\"title\":\"Uhlmann’s Theorem for Relative Entropies\",\"authors\":\"Giulia Mazzola;David Sutter;Renato Renner\",\"doi\":\"10.1109/TIT.2025.3591775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uhlmann’s theorem states that, for any two quantum states <inline-formula> <tex-math>$\\\\rho _{AB}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\sigma _{A}$ </tex-math></inline-formula>, there exists an extension <inline-formula> <tex-math>$\\\\sigma _{AB}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$\\\\sigma _{A}$ </tex-math></inline-formula> such that the fidelity between <inline-formula> <tex-math>$\\\\rho _{AB}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\sigma _{AB}$ </tex-math></inline-formula> equals the fidelity between their reduced states <inline-formula> <tex-math>$\\\\rho _{A}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\sigma _{A}$ </tex-math></inline-formula>. In this work, we generalize Uhlmann’s theorem to <inline-formula> <tex-math>$\\\\alpha $ </tex-math></inline-formula>-Rényi relative entropies for <inline-formula> <tex-math>$\\\\alpha \\\\in \\\\left [{{\\\\frac {1}{2},\\\\infty }}\\\\right]$ </tex-math></inline-formula>, a family of divergences that encompasses fidelity, relative entropy, and max-relative entropy corresponding to <inline-formula> <tex-math>$\\\\alpha =\\\\frac {1}{2}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$\\\\alpha =1$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$\\\\alpha =\\\\infty $ </tex-math></inline-formula>, respectively.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 9\",\"pages\":\"7039-7051\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11090167\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11090167/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11090167/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

乌尔曼定理指出,对于任意两个量子态$\rho _{AB}$和$\sigma _{A}$,存在$\sigma _{A}$的扩展$\sigma _{AB}$,使得$\rho _{AB}$和$\sigma _{AB}$之间的保真度等于它们的简化态$\rho _{A}$和$\sigma _{A}$之间的保真度。在这项工作中,我们将Uhlmann定理推广到$\alpha \in \left [{{\frac {1}{2},\infty }}\right]$的$\alpha $ - r相对熵,是一个包含保真度,相对熵和最大相对熵的散度族,分别对应于$\alpha =\frac {1}{2}$, $\alpha =1$和$\alpha =\infty $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uhlmann’s Theorem for Relative Entropies
Uhlmann’s theorem states that, for any two quantum states $\rho _{AB}$ and $\sigma _{A}$ , there exists an extension $\sigma _{AB}$ of $\sigma _{A}$ such that the fidelity between $\rho _{AB}$ and $\sigma _{AB}$ equals the fidelity between their reduced states $\rho _{A}$ and $\sigma _{A}$ . In this work, we generalize Uhlmann’s theorem to $\alpha $ -Rényi relative entropies for $\alpha \in \left [{{\frac {1}{2},\infty }}\right]$ , a family of divergences that encompasses fidelity, relative entropy, and max-relative entropy corresponding to $\alpha =\frac {1}{2}$ , $\alpha =1$ , and $\alpha =\infty $ , respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信