用复杂的集中合金设计策略解决强度-延性权衡:综述

Desmond Klenam , Olufemi Bamisaye , Tabiri Asumadu , Michael Bodunrin , Winston Soboyejo
{"title":"用复杂的集中合金设计策略解决强度-延性权衡:综述","authors":"Desmond Klenam ,&nbsp;Olufemi Bamisaye ,&nbsp;Tabiri Asumadu ,&nbsp;Michael Bodunrin ,&nbsp;Winston Soboyejo","doi":"10.1016/j.smmf.2025.100091","DOIUrl":null,"url":null,"abstract":"<div><div>This review provides a comprehensive assessment of recent advances in overcoming strength–ductility trade-off in structural alloys through the design of complex concentrated alloys (CCAs) and high entropy alloys (HEAs). It integrates a bibliometric analysis (2014–2024) with a mechanistic evaluation of emerging strategies, emphasizing transition metal-based systems. Findings from over 2,200 publications highlight growing global collaboration, dominant research clusters, and underexplored domains such as TRIP/TWIP effects and interstitial strengthening. Mechanistically, the review consolidates insights into solid solution, grain boundary, dislocation, precipitation, and interstitial strengthening; together with advanced mechanisms including stacking fault engineering, phase metastability, and heterostructural design. Emphasis is placed on the synergistic operation of these mechanisms especially TWIP/TRIP and back-stress hardening, to achieve superior strength–ductility combinations. Distinctions between HEAs and CCAs are clarified, and quantitative contributions of each strengthening mechanism are mapped. The role of hydrogen effects, additive manufacturing, and multi-scale processing in tailoring properties are discussed. By synthesizing bibliometric trends and mechanistic principles, this review establishes a roadmap for future alloy design strategies, offering a robust framework to guide the development of next-generation structural materials with multifunctional performance attributes.</div></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"3 ","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the strength-ductility trade-off using complex concentrated alloy design strategy: An overview\",\"authors\":\"Desmond Klenam ,&nbsp;Olufemi Bamisaye ,&nbsp;Tabiri Asumadu ,&nbsp;Michael Bodunrin ,&nbsp;Winston Soboyejo\",\"doi\":\"10.1016/j.smmf.2025.100091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review provides a comprehensive assessment of recent advances in overcoming strength–ductility trade-off in structural alloys through the design of complex concentrated alloys (CCAs) and high entropy alloys (HEAs). It integrates a bibliometric analysis (2014–2024) with a mechanistic evaluation of emerging strategies, emphasizing transition metal-based systems. Findings from over 2,200 publications highlight growing global collaboration, dominant research clusters, and underexplored domains such as TRIP/TWIP effects and interstitial strengthening. Mechanistically, the review consolidates insights into solid solution, grain boundary, dislocation, precipitation, and interstitial strengthening; together with advanced mechanisms including stacking fault engineering, phase metastability, and heterostructural design. Emphasis is placed on the synergistic operation of these mechanisms especially TWIP/TRIP and back-stress hardening, to achieve superior strength–ductility combinations. Distinctions between HEAs and CCAs are clarified, and quantitative contributions of each strengthening mechanism are mapped. The role of hydrogen effects, additive manufacturing, and multi-scale processing in tailoring properties are discussed. By synthesizing bibliometric trends and mechanistic principles, this review establishes a roadmap for future alloy design strategies, offering a robust framework to guide the development of next-generation structural materials with multifunctional performance attributes.</div></div>\",\"PeriodicalId\":101164,\"journal\":{\"name\":\"Smart Materials in Manufacturing\",\"volume\":\"3 \",\"pages\":\"Article 100091\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772810225000212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772810225000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了通过设计复杂浓缩合金(CCAs)和高熵合金(HEAs)来克服结构合金强度-延性权衡的最新进展。它整合了文献计量分析(2014-2024)和新兴战略的机制评估,强调过渡金属为基础的系统。来自2200多份出版物的研究结果强调了日益增长的全球合作、主导的研究集群和未充分开发的领域,如TRIP/TWIP效应和间隙强化。在力学上,综述巩固了对固溶体、晶界、位错、析出和间隙强化的见解;连同先进的机制,包括层错工程,相亚稳态和异质结构设计。重点放在这些机制的协同作用上,特别是TWIP/TRIP和背应力硬化,以实现卓越的强度-延性组合。澄清了高等教育机构和共同承诺机构之间的区别,并绘制了每种强化机制的定量贡献。讨论了氢效应、增材制造和多尺度加工在裁剪性能中的作用。通过综合文献计量学趋势和力学原理,本文建立了未来合金设计策略的路线图,为指导具有多功能性能属性的下一代结构材料的开发提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solving the strength-ductility trade-off using complex concentrated alloy design strategy: An overview

Solving the strength-ductility trade-off using complex concentrated alloy design strategy: An overview
This review provides a comprehensive assessment of recent advances in overcoming strength–ductility trade-off in structural alloys through the design of complex concentrated alloys (CCAs) and high entropy alloys (HEAs). It integrates a bibliometric analysis (2014–2024) with a mechanistic evaluation of emerging strategies, emphasizing transition metal-based systems. Findings from over 2,200 publications highlight growing global collaboration, dominant research clusters, and underexplored domains such as TRIP/TWIP effects and interstitial strengthening. Mechanistically, the review consolidates insights into solid solution, grain boundary, dislocation, precipitation, and interstitial strengthening; together with advanced mechanisms including stacking fault engineering, phase metastability, and heterostructural design. Emphasis is placed on the synergistic operation of these mechanisms especially TWIP/TRIP and back-stress hardening, to achieve superior strength–ductility combinations. Distinctions between HEAs and CCAs are clarified, and quantitative contributions of each strengthening mechanism are mapped. The role of hydrogen effects, additive manufacturing, and multi-scale processing in tailoring properties are discussed. By synthesizing bibliometric trends and mechanistic principles, this review establishes a roadmap for future alloy design strategies, offering a robust framework to guide the development of next-generation structural materials with multifunctional performance attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信