{"title":"生物医学用掺钕羟基磷灰石纳米颗粒的结构和功能特性","authors":"K.Sai Manogna , K. Kusuma , G.Rajasekhara Reddy , B.Deva Prasad Raju , N.John Sushma","doi":"10.1016/j.btre.2025.e00916","DOIUrl":null,"url":null,"abstract":"<div><div>Neodymium (Nd³⁺) doped hydroxyapatite nanoparticles (Han: Nd³⁺ NPs) were synthesized and systematically characterized to evaluate their structural and functional properties for biomedical applications. X-ray diffraction (XRD) confirmed the crystalline phase retention post-doping, while x-ray photoelectron spectroscopy (XPS) revealed the successful incorporation of Nd³⁺ ions. The doping altered the optical and electronic properties, potentially enhancing bioactivity and imaging capabilities. Preliminary cytotoxicity assessments on MCF7 and 4T1 breast cancer cell lines indicated dose-dependent effects, with IC50 values of 36.13 µg/mL and 64.38 µg/mL, respectively. The study concludes that Han: Nd³⁺ NPs offer promise as multifunctional platforms for cytotoxic response and structural stability, with potential for future application in imaging and targeted breast cancer therapy.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"48 ","pages":"Article e00916"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and functional properties of neodymium-doped hydroxyapatite nanoparticles for biomedical applications\",\"authors\":\"K.Sai Manogna , K. Kusuma , G.Rajasekhara Reddy , B.Deva Prasad Raju , N.John Sushma\",\"doi\":\"10.1016/j.btre.2025.e00916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neodymium (Nd³⁺) doped hydroxyapatite nanoparticles (Han: Nd³⁺ NPs) were synthesized and systematically characterized to evaluate their structural and functional properties for biomedical applications. X-ray diffraction (XRD) confirmed the crystalline phase retention post-doping, while x-ray photoelectron spectroscopy (XPS) revealed the successful incorporation of Nd³⁺ ions. The doping altered the optical and electronic properties, potentially enhancing bioactivity and imaging capabilities. Preliminary cytotoxicity assessments on MCF7 and 4T1 breast cancer cell lines indicated dose-dependent effects, with IC50 values of 36.13 µg/mL and 64.38 µg/mL, respectively. The study concludes that Han: Nd³⁺ NPs offer promise as multifunctional platforms for cytotoxic response and structural stability, with potential for future application in imaging and targeted breast cancer therapy.</div></div>\",\"PeriodicalId\":38117,\"journal\":{\"name\":\"Biotechnology Reports\",\"volume\":\"48 \",\"pages\":\"Article e00916\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215017X25000438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Structural and functional properties of neodymium-doped hydroxyapatite nanoparticles for biomedical applications
Neodymium (Nd³⁺) doped hydroxyapatite nanoparticles (Han: Nd³⁺ NPs) were synthesized and systematically characterized to evaluate their structural and functional properties for biomedical applications. X-ray diffraction (XRD) confirmed the crystalline phase retention post-doping, while x-ray photoelectron spectroscopy (XPS) revealed the successful incorporation of Nd³⁺ ions. The doping altered the optical and electronic properties, potentially enhancing bioactivity and imaging capabilities. Preliminary cytotoxicity assessments on MCF7 and 4T1 breast cancer cell lines indicated dose-dependent effects, with IC50 values of 36.13 µg/mL and 64.38 µg/mL, respectively. The study concludes that Han: Nd³⁺ NPs offer promise as multifunctional platforms for cytotoxic response and structural stability, with potential for future application in imaging and targeted breast cancer therapy.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.