Jung-Ho Shin , Hyun-Sung Kim , Sehee Kim , Won Park , Sung-Ju Ahn
{"title":"渗透胁迫诱导的cspci2e内体运输调节Camelina sativa质膜上的CsPIP2水通道蛋白","authors":"Jung-Ho Shin , Hyun-Sung Kim , Sehee Kim , Won Park , Sung-Ju Ahn","doi":"10.1016/j.jplph.2025.154586","DOIUrl":null,"url":null,"abstract":"<div><div>Rare Cold Inducible 2s (RCI2s) are membrane-associated proteolipids dynamically trafficking between the plasma membrane (PM) and the endomembrane system. Their expression is upregulated in response to abiotic stresses, including cold, heat, drought, and salinity, contributing to plant stress tolerance. CsRCI2E interacts with the water transport protein CsPIP2; 1, reducing its abundance at the PM under NaCl-induced stress. Consequently, CsRCI2E is considered a potential regulator of CsPIP2 endocytosis involved in maintaining cellular homeostasis. However, its precise role in membrane trafficking remains unclear. Therefore, this study aims to investigate the rapid internalization of CsRCI2E and CsPIP2 under mannitol-induced and NaCl-induced osmotic stress using a sucrose density gradient. <em>CsRCI2E</em> transcription levels increased significantly 3 h posttreatment with mannitol or NaCl. <em>CsRCI2E</em> overexpression enhanced stress tolerance and reduced reactive oxygen species accumulation-induced cellular damage during <em>Camelina</em> germination. Despite no concurrent change in <em>CsRCI2E</em> gene expression, the subcellular distribution of CsRCI2E and CsPIP2s (CsPIP2; 1 and CsPIP2; 2) shifted rapidly from the PM to the endomembrane within 0.5 h following osmotic stress. Additionally, <em>CsRCI2E</em> overexpression induced internalization and subcellular redistribution of CsRCI2E and CsPIP2s under osmotic stress and non-stress conditions. These findings suggest that CsRCI2E internalization functions as a sensing mechanism during the initial phase of osmotic shocks. Furthermore, elevated CsRCI2E levels promote CsPIP2s membrane trafficking from the PM to the endomembrane system, supporting water homeostasis in <em>Camelina</em>.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"313 ","pages":"Article 154586"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osmotic stress-induced CsRCI2E endosomal trafficking modulates CsPIP2 aquaporins at the plasma membrane in Camelina sativa\",\"authors\":\"Jung-Ho Shin , Hyun-Sung Kim , Sehee Kim , Won Park , Sung-Ju Ahn\",\"doi\":\"10.1016/j.jplph.2025.154586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rare Cold Inducible 2s (RCI2s) are membrane-associated proteolipids dynamically trafficking between the plasma membrane (PM) and the endomembrane system. Their expression is upregulated in response to abiotic stresses, including cold, heat, drought, and salinity, contributing to plant stress tolerance. CsRCI2E interacts with the water transport protein CsPIP2; 1, reducing its abundance at the PM under NaCl-induced stress. Consequently, CsRCI2E is considered a potential regulator of CsPIP2 endocytosis involved in maintaining cellular homeostasis. However, its precise role in membrane trafficking remains unclear. Therefore, this study aims to investigate the rapid internalization of CsRCI2E and CsPIP2 under mannitol-induced and NaCl-induced osmotic stress using a sucrose density gradient. <em>CsRCI2E</em> transcription levels increased significantly 3 h posttreatment with mannitol or NaCl. <em>CsRCI2E</em> overexpression enhanced stress tolerance and reduced reactive oxygen species accumulation-induced cellular damage during <em>Camelina</em> germination. Despite no concurrent change in <em>CsRCI2E</em> gene expression, the subcellular distribution of CsRCI2E and CsPIP2s (CsPIP2; 1 and CsPIP2; 2) shifted rapidly from the PM to the endomembrane within 0.5 h following osmotic stress. Additionally, <em>CsRCI2E</em> overexpression induced internalization and subcellular redistribution of CsRCI2E and CsPIP2s under osmotic stress and non-stress conditions. These findings suggest that CsRCI2E internalization functions as a sensing mechanism during the initial phase of osmotic shocks. Furthermore, elevated CsRCI2E levels promote CsPIP2s membrane trafficking from the PM to the endomembrane system, supporting water homeostasis in <em>Camelina</em>.</div></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"313 \",\"pages\":\"Article 154586\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161725001683\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725001683","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Osmotic stress-induced CsRCI2E endosomal trafficking modulates CsPIP2 aquaporins at the plasma membrane in Camelina sativa
Rare Cold Inducible 2s (RCI2s) are membrane-associated proteolipids dynamically trafficking between the plasma membrane (PM) and the endomembrane system. Their expression is upregulated in response to abiotic stresses, including cold, heat, drought, and salinity, contributing to plant stress tolerance. CsRCI2E interacts with the water transport protein CsPIP2; 1, reducing its abundance at the PM under NaCl-induced stress. Consequently, CsRCI2E is considered a potential regulator of CsPIP2 endocytosis involved in maintaining cellular homeostasis. However, its precise role in membrane trafficking remains unclear. Therefore, this study aims to investigate the rapid internalization of CsRCI2E and CsPIP2 under mannitol-induced and NaCl-induced osmotic stress using a sucrose density gradient. CsRCI2E transcription levels increased significantly 3 h posttreatment with mannitol or NaCl. CsRCI2E overexpression enhanced stress tolerance and reduced reactive oxygen species accumulation-induced cellular damage during Camelina germination. Despite no concurrent change in CsRCI2E gene expression, the subcellular distribution of CsRCI2E and CsPIP2s (CsPIP2; 1 and CsPIP2; 2) shifted rapidly from the PM to the endomembrane within 0.5 h following osmotic stress. Additionally, CsRCI2E overexpression induced internalization and subcellular redistribution of CsRCI2E and CsPIP2s under osmotic stress and non-stress conditions. These findings suggest that CsRCI2E internalization functions as a sensing mechanism during the initial phase of osmotic shocks. Furthermore, elevated CsRCI2E levels promote CsPIP2s membrane trafficking from the PM to the endomembrane system, supporting water homeostasis in Camelina.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.