Ji-Woo Kim, Seongyea Jo, Eun-Hye Kang, Ji Hyeon Ryu, Haneul Noh, Han-Jin Park, Hyemin Kim
{"title":"表达dCas9-TET1融合蛋白的人胚胎干细胞系用于表观遗传编辑","authors":"Ji-Woo Kim, Seongyea Jo, Eun-Hye Kang, Ji Hyeon Ryu, Haneul Noh, Han-Jin Park, Hyemin Kim","doi":"10.1016/j.scr.2025.103811","DOIUrl":null,"url":null,"abstract":"<div><div>CRISPR-based epigenome editing systems can induce site-specific transcriptional activation or repression of target genes. Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is a transcriptional activation effector involved in the cytosine demethylation of CpG dinucleotides in gene regulatory regions. In this study, we generated a human embryonic stem cell line that stably expresses catalytically dead Cas9 (dCas9) fused to the catalytic domain of TET1 via lentiviral transduction. This cell line can be used for locus-specific transcriptional activation in combination with single guide RNAs and serves as a valuable tool for epigenetic regulation in stem cell and organoid models.</div></div>","PeriodicalId":21843,"journal":{"name":"Stem cell research","volume":"88 ","pages":"Article 103811"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of human embryonic stem cell line expressing dCas9-TET1 fusion protein for epigenetic editing\",\"authors\":\"Ji-Woo Kim, Seongyea Jo, Eun-Hye Kang, Ji Hyeon Ryu, Haneul Noh, Han-Jin Park, Hyemin Kim\",\"doi\":\"10.1016/j.scr.2025.103811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CRISPR-based epigenome editing systems can induce site-specific transcriptional activation or repression of target genes. Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is a transcriptional activation effector involved in the cytosine demethylation of CpG dinucleotides in gene regulatory regions. In this study, we generated a human embryonic stem cell line that stably expresses catalytically dead Cas9 (dCas9) fused to the catalytic domain of TET1 via lentiviral transduction. This cell line can be used for locus-specific transcriptional activation in combination with single guide RNAs and serves as a valuable tool for epigenetic regulation in stem cell and organoid models.</div></div>\",\"PeriodicalId\":21843,\"journal\":{\"name\":\"Stem cell research\",\"volume\":\"88 \",\"pages\":\"Article 103811\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873506125001618\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873506125001618","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Generation of human embryonic stem cell line expressing dCas9-TET1 fusion protein for epigenetic editing
CRISPR-based epigenome editing systems can induce site-specific transcriptional activation or repression of target genes. Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is a transcriptional activation effector involved in the cytosine demethylation of CpG dinucleotides in gene regulatory regions. In this study, we generated a human embryonic stem cell line that stably expresses catalytically dead Cas9 (dCas9) fused to the catalytic domain of TET1 via lentiviral transduction. This cell line can be used for locus-specific transcriptional activation in combination with single guide RNAs and serves as a valuable tool for epigenetic regulation in stem cell and organoid models.
期刊介绍:
Stem Cell Research is dedicated to publishing high-quality manuscripts focusing on the biology and applications of stem cell research. Submissions to Stem Cell Research, may cover all aspects of stem cells, including embryonic stem cells, tissue-specific stem cells, cancer stem cells, developmental studies, stem cell genomes, and translational research. Stem Cell Research publishes 6 issues a year.