具有Neumann边界条件的sin - gordon方程的显式高阶结构保持方法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Jiaxiang Cai , Bingxian Wang
{"title":"具有Neumann边界条件的sin - gordon方程的显式高阶结构保持方法","authors":"Jiaxiang Cai ,&nbsp;Bingxian Wang","doi":"10.1016/j.aml.2025.109729","DOIUrl":null,"url":null,"abstract":"<div><div>We first derive high-order ‘symmetric image’ formulas to effectively address Neumann boundary conditions for the sine-Gordon equation. Then we propose a high-order energy-preserving approach by integrating the scalar auxiliary variable method with a fourth-order compact discretization and these derived formulas. The approach is highly efficient due to its explicit solver. Numerical experiments are carried out to demonstrate the solution accuracy, exact energy preservation, and waveform evolution.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109729"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit high-order structure-preserving approach for sine-Gordon equation with Neumann boundary conditions\",\"authors\":\"Jiaxiang Cai ,&nbsp;Bingxian Wang\",\"doi\":\"10.1016/j.aml.2025.109729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We first derive high-order ‘symmetric image’ formulas to effectively address Neumann boundary conditions for the sine-Gordon equation. Then we propose a high-order energy-preserving approach by integrating the scalar auxiliary variable method with a fourth-order compact discretization and these derived formulas. The approach is highly efficient due to its explicit solver. Numerical experiments are carried out to demonstrate the solution accuracy, exact energy preservation, and waveform evolution.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109729\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002794\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002794","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们首先推导出高阶“对称图像”公式,以有效地解决正弦-戈登方程的诺伊曼边界条件。然后,将标量辅助变量法与四阶紧化离散和这些导出公式相结合,提出了一种高阶保能方法。该方法采用了显式求解器,具有较高的效率。通过数值实验验证了该方法的求解精度、能量守恒性和波形演化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit high-order structure-preserving approach for sine-Gordon equation with Neumann boundary conditions
We first derive high-order ‘symmetric image’ formulas to effectively address Neumann boundary conditions for the sine-Gordon equation. Then we propose a high-order energy-preserving approach by integrating the scalar auxiliary variable method with a fourth-order compact discretization and these derived formulas. The approach is highly efficient due to its explicit solver. Numerical experiments are carried out to demonstrate the solution accuracy, exact energy preservation, and waveform evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信