{"title":"纳米石墨烯(NG - (ZnO)n n = 1-6)锚定体系对CO、CO2和NO2的吸附:从头开始分子动力学计算","authors":"A. C. Piñón Reyes , M. Salazar Villanueva","doi":"10.1016/j.cartre.2025.100564","DOIUrl":null,"url":null,"abstract":"<div><div>To assess the chemical interaction between different gases and functionalized semiconductor clusters, DFT (Density functional theory) simulations were performed.</div><div>For this work the primary objective is to understand the behavior of nanographenes NGs →C (carbon atoms) functionalized with a cluster of zinc oxide (ZnO)<sub>n</sub> of different sizes <em>n</em> = 1-6, to understand the effects of smallest clusters, hence it is important to stablish the adsorption tendency at first stages. This first step is the basis for evaluating the chemical interaction between CO, CO<sub>2</sub>, and NO<sub>2</sub> with functionalized semiconductor clusters. The objective is to study changes in adsorption trends, considering different gases and clusters sizes.</div><div>The adsorption energy values for C-(ZnO)<sub>2</sub>-CO, C-ZnO-CO<sub>2</sub> and C-ZnO-NO<sub>2</sub> are -0.195 eV, -0.543 eV and -3.042 eV respectively, which is related to the results of lower average length distance A.B.L. obtained between the atoms of the species studied (distance of Zn atom to CO, CO<sub>2</sub> and NO<sub>2</sub>). Due to the active sites, there is presence of a chemisorption in C-ZnO-NO<sub>2</sub> system, but in C-(ZnO)<sub>2</sub>-CO and C-ZnO-CO<sub>2</sub> present physisorption. The electron gap values do not vary significantly for <em>n</em> = 3-6 and the HOMO-LUMO isosurfaces are depicted for all systems. The electron transfer at the adsorption sites is directed from the chemical species toward the CO, CO<sub>2</sub>, and NO<sub>2</sub> in all the systems analyzed. Based on these findings, C-(ZnO)<sub>2</sub>-CO, C-ZnO-CO<sub>2</sub> and C-(ZnO)<sub>1</sub>-NO<sub>2</sub> systems are potential options for CO, CO<sub>2</sub>, and NO<sub>2</sub> gas storage, respectively. In addition, an analysis has been carried out on the behavior of larger GNs systems. These results may be useful to researchers in the potential design of a gas storage device for energy applications that are environmentally friendly.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"21 ","pages":"Article 100564"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of CO, CO2 and NO2 onto nanographenes (NGs), anchored systems as NG−(ZnO)n n = 1-6: An ab initio molecular dynamics calculations\",\"authors\":\"A. C. Piñón Reyes , M. Salazar Villanueva\",\"doi\":\"10.1016/j.cartre.2025.100564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To assess the chemical interaction between different gases and functionalized semiconductor clusters, DFT (Density functional theory) simulations were performed.</div><div>For this work the primary objective is to understand the behavior of nanographenes NGs →C (carbon atoms) functionalized with a cluster of zinc oxide (ZnO)<sub>n</sub> of different sizes <em>n</em> = 1-6, to understand the effects of smallest clusters, hence it is important to stablish the adsorption tendency at first stages. This first step is the basis for evaluating the chemical interaction between CO, CO<sub>2</sub>, and NO<sub>2</sub> with functionalized semiconductor clusters. The objective is to study changes in adsorption trends, considering different gases and clusters sizes.</div><div>The adsorption energy values for C-(ZnO)<sub>2</sub>-CO, C-ZnO-CO<sub>2</sub> and C-ZnO-NO<sub>2</sub> are -0.195 eV, -0.543 eV and -3.042 eV respectively, which is related to the results of lower average length distance A.B.L. obtained between the atoms of the species studied (distance of Zn atom to CO, CO<sub>2</sub> and NO<sub>2</sub>). Due to the active sites, there is presence of a chemisorption in C-ZnO-NO<sub>2</sub> system, but in C-(ZnO)<sub>2</sub>-CO and C-ZnO-CO<sub>2</sub> present physisorption. The electron gap values do not vary significantly for <em>n</em> = 3-6 and the HOMO-LUMO isosurfaces are depicted for all systems. The electron transfer at the adsorption sites is directed from the chemical species toward the CO, CO<sub>2</sub>, and NO<sub>2</sub> in all the systems analyzed. Based on these findings, C-(ZnO)<sub>2</sub>-CO, C-ZnO-CO<sub>2</sub> and C-(ZnO)<sub>1</sub>-NO<sub>2</sub> systems are potential options for CO, CO<sub>2</sub>, and NO<sub>2</sub> gas storage, respectively. In addition, an analysis has been carried out on the behavior of larger GNs systems. These results may be useful to researchers in the potential design of a gas storage device for energy applications that are environmentally friendly.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"21 \",\"pages\":\"Article 100564\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056925001142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925001142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Adsorption of CO, CO2 and NO2 onto nanographenes (NGs), anchored systems as NG−(ZnO)n n = 1-6: An ab initio molecular dynamics calculations
To assess the chemical interaction between different gases and functionalized semiconductor clusters, DFT (Density functional theory) simulations were performed.
For this work the primary objective is to understand the behavior of nanographenes NGs →C (carbon atoms) functionalized with a cluster of zinc oxide (ZnO)n of different sizes n = 1-6, to understand the effects of smallest clusters, hence it is important to stablish the adsorption tendency at first stages. This first step is the basis for evaluating the chemical interaction between CO, CO2, and NO2 with functionalized semiconductor clusters. The objective is to study changes in adsorption trends, considering different gases and clusters sizes.
The adsorption energy values for C-(ZnO)2-CO, C-ZnO-CO2 and C-ZnO-NO2 are -0.195 eV, -0.543 eV and -3.042 eV respectively, which is related to the results of lower average length distance A.B.L. obtained between the atoms of the species studied (distance of Zn atom to CO, CO2 and NO2). Due to the active sites, there is presence of a chemisorption in C-ZnO-NO2 system, but in C-(ZnO)2-CO and C-ZnO-CO2 present physisorption. The electron gap values do not vary significantly for n = 3-6 and the HOMO-LUMO isosurfaces are depicted for all systems. The electron transfer at the adsorption sites is directed from the chemical species toward the CO, CO2, and NO2 in all the systems analyzed. Based on these findings, C-(ZnO)2-CO, C-ZnO-CO2 and C-(ZnO)1-NO2 systems are potential options for CO, CO2, and NO2 gas storage, respectively. In addition, an analysis has been carried out on the behavior of larger GNs systems. These results may be useful to researchers in the potential design of a gas storage device for energy applications that are environmentally friendly.