基于傅里叶扩展和过采样技术的任意域双调和求解器

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Wenbin Li, Tinggang Zhao, Zhenyu Zhao
{"title":"基于傅里叶扩展和过采样技术的任意域双调和求解器","authors":"Wenbin Li,&nbsp;Tinggang Zhao,&nbsp;Zhenyu Zhao","doi":"10.1016/j.apnum.2025.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>The biharmonic equation is commonly encountered in various fields such as elasticity theory, fluid dynamics, and image processing. Solving it on irregular domain presents a significant challenge. In this paper, Fourier extension method is used to solve the biharmonic equation on arbitrary domain. The method involves the oversampling collocation technique with the truncated singular value decomposition regularization, which comes out a spectral convergence rate for the smooth solution. This method only uses the function values on equidistant nodes and has the characteristics of less computation, strong universality and better accuracy. The effectiveness of the proposed method is demonstrated by a variety of numerical experiments.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 261-274"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A biharmonic solver based on Fourier extension with oversampling technique for arbitrary domain\",\"authors\":\"Wenbin Li,&nbsp;Tinggang Zhao,&nbsp;Zhenyu Zhao\",\"doi\":\"10.1016/j.apnum.2025.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The biharmonic equation is commonly encountered in various fields such as elasticity theory, fluid dynamics, and image processing. Solving it on irregular domain presents a significant challenge. In this paper, Fourier extension method is used to solve the biharmonic equation on arbitrary domain. The method involves the oversampling collocation technique with the truncated singular value decomposition regularization, which comes out a spectral convergence rate for the smooth solution. This method only uses the function values on equidistant nodes and has the characteristics of less computation, strong universality and better accuracy. The effectiveness of the proposed method is demonstrated by a variety of numerical experiments.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"218 \",\"pages\":\"Pages 261-274\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001692\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001692","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

双调和方程在弹性理论、流体动力学和图像处理等各个领域都经常遇到。在不规则域上求解这一问题是一个重大的挑战。本文采用傅里叶扩展法求解任意域上的双调和方程。该方法将过采样配置技术与截断奇异值分解正则化相结合,得到光滑解的谱收敛速率。该方法只使用等距节点上的函数值,具有计算量少、通用性强、精度高等特点。各种数值实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A biharmonic solver based on Fourier extension with oversampling technique for arbitrary domain
The biharmonic equation is commonly encountered in various fields such as elasticity theory, fluid dynamics, and image processing. Solving it on irregular domain presents a significant challenge. In this paper, Fourier extension method is used to solve the biharmonic equation on arbitrary domain. The method involves the oversampling collocation technique with the truncated singular value decomposition regularization, which comes out a spectral convergence rate for the smooth solution. This method only uses the function values on equidistant nodes and has the characteristics of less computation, strong universality and better accuracy. The effectiveness of the proposed method is demonstrated by a variety of numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信