scRiskCell:用于量化2型糖尿病胰岛风险细胞及其适应动态的单细胞框架

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2025-06-24 DOI:10.1002/imt2.70060
Xueqin Xie, Changchun Wu, Fuying Dao, Kejun Deng, Dan Yan, Jian Huang, Hao Lyu, Hao Lin
{"title":"scRiskCell:用于量化2型糖尿病胰岛风险细胞及其适应动态的单细胞框架","authors":"Xueqin Xie,&nbsp;Changchun Wu,&nbsp;Fuying Dao,&nbsp;Kejun Deng,&nbsp;Dan Yan,&nbsp;Jian Huang,&nbsp;Hao Lyu,&nbsp;Hao Lin","doi":"10.1002/imt2.70060","DOIUrl":null,"url":null,"abstract":"<p>scRiskCell is an interpretable intelligent computational framework that leverages nearly 500,000 islet cell expression profiles from 106 donors across different continuous disease states. By calculating the intrinsic relationship between donor disease states and cell expression profiles, it assigns a pseudo-cell state index to each cell. Sorting the pseudo-indexes of cells enables the identification of risk cells truly disrupted by the disease. Importantly, scRiskCell reveals the dynamic aggregation pattern of risk cells during disease progression, providing mechanistic insights for early disease prediction and clinical dynamic monitoring of disease progression.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"4 4","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.70060","citationCount":"0","resultStr":"{\"title\":\"scRiskCell: A single-cell framework for quantifying islet risk cells and their adaptive dynamics in type 2 diabetes\",\"authors\":\"Xueqin Xie,&nbsp;Changchun Wu,&nbsp;Fuying Dao,&nbsp;Kejun Deng,&nbsp;Dan Yan,&nbsp;Jian Huang,&nbsp;Hao Lyu,&nbsp;Hao Lin\",\"doi\":\"10.1002/imt2.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>scRiskCell is an interpretable intelligent computational framework that leverages nearly 500,000 islet cell expression profiles from 106 donors across different continuous disease states. By calculating the intrinsic relationship between donor disease states and cell expression profiles, it assigns a pseudo-cell state index to each cell. Sorting the pseudo-indexes of cells enables the identification of risk cells truly disrupted by the disease. Importantly, scRiskCell reveals the dynamic aggregation pattern of risk cells during disease progression, providing mechanistic insights for early disease prediction and clinical dynamic monitoring of disease progression.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":73342,\"journal\":{\"name\":\"iMeta\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":23.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.70060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iMeta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/imt2.70060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.70060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

scRiskCell是一个可解释的智能计算框架,利用来自106个不同连续疾病状态的供体的近50万个胰岛细胞表达谱。通过计算供体疾病状态和细胞表达谱之间的内在关系,它为每个细胞分配一个伪细胞状态指数。对细胞的伪指数进行分类,可以识别出真正被疾病破坏的危险细胞。重要的是,scRiskCell揭示了疾病进展过程中风险细胞的动态聚集模式,为疾病早期预测和疾病进展的临床动态监测提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

scRiskCell: A single-cell framework for quantifying islet risk cells and their adaptive dynamics in type 2 diabetes

scRiskCell: A single-cell framework for quantifying islet risk cells and their adaptive dynamics in type 2 diabetes

scRiskCell is an interpretable intelligent computational framework that leverages nearly 500,000 islet cell expression profiles from 106 donors across different continuous disease states. By calculating the intrinsic relationship between donor disease states and cell expression profiles, it assigns a pseudo-cell state index to each cell. Sorting the pseudo-indexes of cells enables the identification of risk cells truly disrupted by the disease. Importantly, scRiskCell reveals the dynamic aggregation pattern of risk cells during disease progression, providing mechanistic insights for early disease prediction and clinical dynamic monitoring of disease progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信