{"title":"肿瘤细胞上c-Met作为B7-H3新受体的鉴定对肿瘤细胞干细胞和靶向治疗具有重要意义","authors":"Lei Cao, Yunyun Xu, Yizhou Hu, Xue Huang, Fengqing Fu, Shenghua Zhan, Lili Huang, Yangyang Feng, Ylivinkka Irene, Huini Li, Varjosalo Markku, Keski-Oja Jorma, Guangbo Zhang, Binfeng Lu, Jian Wang, Wanli Liu, Xueguang Zhang","doi":"10.1002/mco2.70332","DOIUrl":null,"url":null,"abstract":"<p>The immune checkpoint molecule B7-H3 is upregulated in many solid tumors, and B7-H3-targeted immunotherapies are in clinical trials. Recently, a growing body of research has highlighted the presence of tumor cell intrinsic while immune cell-independent functions of B7-H3 in tumorigenesis and cancer cell stemness. However, its receptors and mechanisms of action on cancer cells remain poorly understood. Here, we report that c-Met, a canonical oncogenic receptor tyrosine kinase on cancer cells, is identified as a novel binding protein for B7-H3. The binding between c-Met and B7-H3 directly activates the c-Met/STAT3 signaling cascade, promoting cancer cell stemness in both colorectal cancer and glioblastoma-derived tumor cells. More importantly, we evaluated the translational implications of this discovery by screening a high-affinity antibody designed to selectively disrupt the interaction between B7-H3 and c-Met, demonstrating strong anti-tumor activities, surpassing that of the B7-H3-specific antibody lacking the blocking capability. Combination therapy of this newly developed interaction blocking antibody with c-Met inhibitor results in significantly improved therapeutic effects in inhibiting tumor growth. These findings shed light on previously undisclosed interaction of B7-H3 to c-Met on cancer cells, thereby indicating a new mechanism of cancer cell stemness and intervention pathway of molecular targeted therapy.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 9","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70332","citationCount":"0","resultStr":"{\"title\":\"Identification of c-Met on Tumor Cells as a Novel Receptor for B7-H3 Entails Implications for Cancer Cell Stemness and Targeted Therapy\",\"authors\":\"Lei Cao, Yunyun Xu, Yizhou Hu, Xue Huang, Fengqing Fu, Shenghua Zhan, Lili Huang, Yangyang Feng, Ylivinkka Irene, Huini Li, Varjosalo Markku, Keski-Oja Jorma, Guangbo Zhang, Binfeng Lu, Jian Wang, Wanli Liu, Xueguang Zhang\",\"doi\":\"10.1002/mco2.70332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The immune checkpoint molecule B7-H3 is upregulated in many solid tumors, and B7-H3-targeted immunotherapies are in clinical trials. Recently, a growing body of research has highlighted the presence of tumor cell intrinsic while immune cell-independent functions of B7-H3 in tumorigenesis and cancer cell stemness. However, its receptors and mechanisms of action on cancer cells remain poorly understood. Here, we report that c-Met, a canonical oncogenic receptor tyrosine kinase on cancer cells, is identified as a novel binding protein for B7-H3. The binding between c-Met and B7-H3 directly activates the c-Met/STAT3 signaling cascade, promoting cancer cell stemness in both colorectal cancer and glioblastoma-derived tumor cells. More importantly, we evaluated the translational implications of this discovery by screening a high-affinity antibody designed to selectively disrupt the interaction between B7-H3 and c-Met, demonstrating strong anti-tumor activities, surpassing that of the B7-H3-specific antibody lacking the blocking capability. Combination therapy of this newly developed interaction blocking antibody with c-Met inhibitor results in significantly improved therapeutic effects in inhibiting tumor growth. These findings shed light on previously undisclosed interaction of B7-H3 to c-Met on cancer cells, thereby indicating a new mechanism of cancer cell stemness and intervention pathway of molecular targeted therapy.</p>\",\"PeriodicalId\":94133,\"journal\":{\"name\":\"MedComm\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70332\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Identification of c-Met on Tumor Cells as a Novel Receptor for B7-H3 Entails Implications for Cancer Cell Stemness and Targeted Therapy
The immune checkpoint molecule B7-H3 is upregulated in many solid tumors, and B7-H3-targeted immunotherapies are in clinical trials. Recently, a growing body of research has highlighted the presence of tumor cell intrinsic while immune cell-independent functions of B7-H3 in tumorigenesis and cancer cell stemness. However, its receptors and mechanisms of action on cancer cells remain poorly understood. Here, we report that c-Met, a canonical oncogenic receptor tyrosine kinase on cancer cells, is identified as a novel binding protein for B7-H3. The binding between c-Met and B7-H3 directly activates the c-Met/STAT3 signaling cascade, promoting cancer cell stemness in both colorectal cancer and glioblastoma-derived tumor cells. More importantly, we evaluated the translational implications of this discovery by screening a high-affinity antibody designed to selectively disrupt the interaction between B7-H3 and c-Met, demonstrating strong anti-tumor activities, surpassing that of the B7-H3-specific antibody lacking the blocking capability. Combination therapy of this newly developed interaction blocking antibody with c-Met inhibitor results in significantly improved therapeutic effects in inhibiting tumor growth. These findings shed light on previously undisclosed interaction of B7-H3 to c-Met on cancer cells, thereby indicating a new mechanism of cancer cell stemness and intervention pathway of molecular targeted therapy.