RepliChrom:可解释的机器学习利用DNA复制时间预测癌症相关的增强子-启动子相互作用

IF 23.7 Q1 MICROBIOLOGY
iMeta Pub Date : 2025-05-27 DOI:10.1002/imt2.70052
Fuying Dao, Benjamin Lebeau, Crystal Chia Yin Ling, Mi Yang, Xueqin Xie, Melissa Jane Fullwood, Hao Lin, Hao Lyu
{"title":"RepliChrom:可解释的机器学习利用DNA复制时间预测癌症相关的增强子-启动子相互作用","authors":"Fuying Dao,&nbsp;Benjamin Lebeau,&nbsp;Crystal Chia Yin Ling,&nbsp;Mi Yang,&nbsp;Xueqin Xie,&nbsp;Melissa Jane Fullwood,&nbsp;Hao Lin,&nbsp;Hao Lyu","doi":"10.1002/imt2.70052","DOIUrl":null,"url":null,"abstract":"<p>RepliChrom is an interpretable machine learning model that predicts enhancer-promoter interactions using DNA replication timing across multiple cell types. By integrating replication timing with chromatin interaction data from multiple experimental platforms, it accurately distinguishes true interactions and reveals promoter-region signals as key regulatory drivers. Importantly, the RepliChrom uncovers cancer-specific chromatin patterns in leukemia, offering mechanistic insights into how replication timing shapes long-range gene regulation in both normal and diseased genomes.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"4 4","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.70052","citationCount":"0","resultStr":"{\"title\":\"RepliChrom: Interpretable machine learning predicts cancer-associated enhancer-promoter interactions using DNA replication timing\",\"authors\":\"Fuying Dao,&nbsp;Benjamin Lebeau,&nbsp;Crystal Chia Yin Ling,&nbsp;Mi Yang,&nbsp;Xueqin Xie,&nbsp;Melissa Jane Fullwood,&nbsp;Hao Lin,&nbsp;Hao Lyu\",\"doi\":\"10.1002/imt2.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>RepliChrom is an interpretable machine learning model that predicts enhancer-promoter interactions using DNA replication timing across multiple cell types. By integrating replication timing with chromatin interaction data from multiple experimental platforms, it accurately distinguishes true interactions and reveals promoter-region signals as key regulatory drivers. Importantly, the RepliChrom uncovers cancer-specific chromatin patterns in leukemia, offering mechanistic insights into how replication timing shapes long-range gene regulation in both normal and diseased genomes.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":73342,\"journal\":{\"name\":\"iMeta\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":23.7000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.70052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iMeta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/imt2.70052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.70052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

RepliChrom是一种可解释的机器学习模型,可通过多种细胞类型的DNA复制时间来预测增强子-启动子相互作用。通过整合来自多个实验平台的复制时间和染色质相互作用数据,该研究准确区分了真正的相互作用,并揭示了启动子区域信号作为关键的调控驱动因素。重要的是,RepliChrom揭示了白血病中癌症特异性的染色质模式,为复制时间如何影响正常和患病基因组中的远程基因调控提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RepliChrom: Interpretable machine learning predicts cancer-associated enhancer-promoter interactions using DNA replication timing

RepliChrom: Interpretable machine learning predicts cancer-associated enhancer-promoter interactions using DNA replication timing

RepliChrom is an interpretable machine learning model that predicts enhancer-promoter interactions using DNA replication timing across multiple cell types. By integrating replication timing with chromatin interaction data from multiple experimental platforms, it accurately distinguishes true interactions and reveals promoter-region signals as key regulatory drivers. Importantly, the RepliChrom uncovers cancer-specific chromatin patterns in leukemia, offering mechanistic insights into how replication timing shapes long-range gene regulation in both normal and diseased genomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信