一种用于非线性波浪的简化一维海底液化模型

IF 3.4 2区 地球科学 Q1 OCEANOGRAPHY
A. Sheremet, H. Klammler, J. Calantoni
{"title":"一种用于非线性波浪的简化一维海底液化模型","authors":"A. Sheremet,&nbsp;H. Klammler,&nbsp;J. Calantoni","doi":"10.1029/2025JC022730","DOIUrl":null,"url":null,"abstract":"<p>Previous studies report a significant decrease of seabed destabilization under nonlinear waves compared to linear waves. To investigate this effect, we simplify the equations governing the sediment stability to a single vertical diffusion equation, which encapsulates the properties of the media (water and sediment) in a single effective diffusivity parameter. The simplified model provides an effective means for deriving a maximum liquefaction depth under linear waves and for a comprehensive investigation of the liquefaction effects under nonlinear waves expressed by third order wave statistics, skewness, and asymmetry. Fourier liquefaction modes are shown to lag bottom pressure components by <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mi>π</mi>\n <mo>/</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $3\\pi /4$</annotation>\n </semantics></math>. Under nonlinear shallow water waves lagged liquefaction harmonics can combine to modify significantly the intensity and duration of bed decompression rate. Under positively skewed waves with negative asymmetry, this results in a weaker sediment destabilization. For practical applications, popular linear wave estimates such as the random phase approximation can significantly overestimate liquefaction effects and burial depths under nonlinear waves.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simplified 1D Seafloor Liquefaction Model Applied to Nonlinear Waves\",\"authors\":\"A. Sheremet,&nbsp;H. Klammler,&nbsp;J. Calantoni\",\"doi\":\"10.1029/2025JC022730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous studies report a significant decrease of seabed destabilization under nonlinear waves compared to linear waves. To investigate this effect, we simplify the equations governing the sediment stability to a single vertical diffusion equation, which encapsulates the properties of the media (water and sediment) in a single effective diffusivity parameter. The simplified model provides an effective means for deriving a maximum liquefaction depth under linear waves and for a comprehensive investigation of the liquefaction effects under nonlinear waves expressed by third order wave statistics, skewness, and asymmetry. Fourier liquefaction modes are shown to lag bottom pressure components by <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mi>π</mi>\\n <mo>/</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $3\\\\pi /4$</annotation>\\n </semantics></math>. Under nonlinear shallow water waves lagged liquefaction harmonics can combine to modify significantly the intensity and duration of bed decompression rate. Under positively skewed waves with negative asymmetry, this results in a weaker sediment destabilization. For practical applications, popular linear wave estimates such as the random phase approximation can significantly overestimate liquefaction effects and burial depths under nonlinear waves.</p>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":\"130 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JC022730\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JC022730","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究表明,与线性波浪相比,非线性波浪作用下的海床失稳显著减少。为了研究这种影响,我们将控制沉积物稳定性的方程简化为单个垂直扩散方程,该方程将介质(水和沉积物)的特性封装在单个有效扩散系数参数中。简化模型为推导线性波作用下的最大液化深度和全面研究用三阶波统计量、偏度和不对称表示的非线性波作用下的液化效应提供了有效手段。傅里叶液化模式显示滞后底压分量3 π /4$ 3\pi /4$。在非线性浅水波作用下,滞后液化谐波的组合作用显著地改变了地层减压速率的强度和持续时间。在负不对称的正斜波下,泥沙失稳较弱。在实际应用中,常用的线性波估计(如随机相位近似)会严重高估非线性波作用下的液化效应和埋深。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Simplified 1D Seafloor Liquefaction Model Applied to Nonlinear Waves

A Simplified 1D Seafloor Liquefaction Model Applied to Nonlinear Waves

A Simplified 1D Seafloor Liquefaction Model Applied to Nonlinear Waves

A Simplified 1D Seafloor Liquefaction Model Applied to Nonlinear Waves

Previous studies report a significant decrease of seabed destabilization under nonlinear waves compared to linear waves. To investigate this effect, we simplify the equations governing the sediment stability to a single vertical diffusion equation, which encapsulates the properties of the media (water and sediment) in a single effective diffusivity parameter. The simplified model provides an effective means for deriving a maximum liquefaction depth under linear waves and for a comprehensive investigation of the liquefaction effects under nonlinear waves expressed by third order wave statistics, skewness, and asymmetry. Fourier liquefaction modes are shown to lag bottom pressure components by 3 π / 4 $3\pi /4$ . Under nonlinear shallow water waves lagged liquefaction harmonics can combine to modify significantly the intensity and duration of bed decompression rate. Under positively skewed waves with negative asymmetry, this results in a weaker sediment destabilization. For practical applications, popular linear wave estimates such as the random phase approximation can significantly overestimate liquefaction effects and burial depths under nonlinear waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信