Born-Oppenheimer高能散射重整化群:CSS, DGLAP等

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Haowu Duan, Alex Kovner, Michael Lublinsky
{"title":"Born-Oppenheimer高能散射重整化群:CSS, DGLAP等","authors":"Haowu Duan,&nbsp;Alex Kovner,&nbsp;Michael Lublinsky","doi":"10.1007/JHEP08(2025)137","DOIUrl":null,"url":null,"abstract":"<p>In [1], we have introduced the Born-Oppenheimer (BO) renormalization group approach to high energy hadronic collisions and derived the BO approximation for the light cone wave function of a fast moving projectile hadron. In this second paper, we utilize this wave function to derive the BO evolution of partonic distributions in the hadron — the gluon transverse momentum and integrated parton distributions (TMD and PDF respectively). The evolution equation for the TMD contains a linear and a nonlinear term. The linear term reproduces the Collins-Soper-Sterman (CSS) equation with a physical relation between the transverse and longitudinal resolution scales. We explain how this equivalence arises, even though the BO and CSS cascades are somewhat different in structures. The nonlinear term in the evolution has a very appealing physical meaning: it is a correction due to stimulated emission, which enhances emission of gluons (bosons) into states with a nonzero occupation. For the evolution of the PDF we again find a linear and nonlinear term. At not very small Bjorken <i>x</i>, the linear term recovers the DGLAP equation in the leading logarithmic approximation. At small <i>x</i> however there are contributions from gluon splittings which are in the BFKL kinematics leading to a modification of the DGLAP equation. The nonlinear terms have the same physical origin as in the equation for the TMD — the stimulated emission corrections. Interestingly the nonlinear corrections are the most important for the virtual terms, so that the net correction to the DGLAP is negative and mimics shadowing, although the physical origin of the nonlinearity is very different.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)137.pdf","citationCount":"0","resultStr":"{\"title\":\"Born-Oppenheimer renormalization group for high energy scattering: CSS, DGLAP and all that\",\"authors\":\"Haowu Duan,&nbsp;Alex Kovner,&nbsp;Michael Lublinsky\",\"doi\":\"10.1007/JHEP08(2025)137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In [1], we have introduced the Born-Oppenheimer (BO) renormalization group approach to high energy hadronic collisions and derived the BO approximation for the light cone wave function of a fast moving projectile hadron. In this second paper, we utilize this wave function to derive the BO evolution of partonic distributions in the hadron — the gluon transverse momentum and integrated parton distributions (TMD and PDF respectively). The evolution equation for the TMD contains a linear and a nonlinear term. The linear term reproduces the Collins-Soper-Sterman (CSS) equation with a physical relation between the transverse and longitudinal resolution scales. We explain how this equivalence arises, even though the BO and CSS cascades are somewhat different in structures. The nonlinear term in the evolution has a very appealing physical meaning: it is a correction due to stimulated emission, which enhances emission of gluons (bosons) into states with a nonzero occupation. For the evolution of the PDF we again find a linear and nonlinear term. At not very small Bjorken <i>x</i>, the linear term recovers the DGLAP equation in the leading logarithmic approximation. At small <i>x</i> however there are contributions from gluon splittings which are in the BFKL kinematics leading to a modification of the DGLAP equation. The nonlinear terms have the same physical origin as in the equation for the TMD — the stimulated emission corrections. Interestingly the nonlinear corrections are the most important for the virtual terms, so that the net correction to the DGLAP is negative and mimics shadowing, although the physical origin of the nonlinearity is very different.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)137.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP08(2025)137\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP08(2025)137","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在b[1]中,我们引入了高能强子碰撞的Born-Oppenheimer (BO)重正化群方法,并推导了快速运动抛射强子的光锥波函数的BO近似。在第二篇论文中,我们利用这个波函数推导了强子中部分子分布的BO演化——胶子横向动量和积分部分子分布(分别为TMD和PDF)。TMD的演化方程包含一个线性项和一个非线性项。线性项再现了Collins-Soper-Sterman (CSS)方程,在横向和纵向分辨率尺度之间具有物理关系。我们解释了这种等价是如何产生的,尽管BO和CSS级联在结构上有些不同。演化中的非线性项具有非常吸引人的物理意义:它是由于受激辐射引起的一种修正,它增强了胶子(玻色子)向非零占位态的发射。对于PDF的演化,我们再次找到一个线性和非线性的项。在不是非常小的Bjorken x下,线性项恢复了领先的对数近似中的DGLAP方程。然而,在小x处,胶子分裂的贡献是在BFKL运动学中导致DGLAP方程的修改。非线性项具有与TMD方程相同的物理起源-受激发射修正。有趣的是,非线性校正对于虚拟项来说是最重要的,因此对dlap的净校正是负的,并且模拟阴影,尽管非线性的物理起源非常不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Born-Oppenheimer renormalization group for high energy scattering: CSS, DGLAP and all that

In [1], we have introduced the Born-Oppenheimer (BO) renormalization group approach to high energy hadronic collisions and derived the BO approximation for the light cone wave function of a fast moving projectile hadron. In this second paper, we utilize this wave function to derive the BO evolution of partonic distributions in the hadron — the gluon transverse momentum and integrated parton distributions (TMD and PDF respectively). The evolution equation for the TMD contains a linear and a nonlinear term. The linear term reproduces the Collins-Soper-Sterman (CSS) equation with a physical relation between the transverse and longitudinal resolution scales. We explain how this equivalence arises, even though the BO and CSS cascades are somewhat different in structures. The nonlinear term in the evolution has a very appealing physical meaning: it is a correction due to stimulated emission, which enhances emission of gluons (bosons) into states with a nonzero occupation. For the evolution of the PDF we again find a linear and nonlinear term. At not very small Bjorken x, the linear term recovers the DGLAP equation in the leading logarithmic approximation. At small x however there are contributions from gluon splittings which are in the BFKL kinematics leading to a modification of the DGLAP equation. The nonlinear terms have the same physical origin as in the equation for the TMD — the stimulated emission corrections. Interestingly the nonlinear corrections are the most important for the virtual terms, so that the net correction to the DGLAP is negative and mimics shadowing, although the physical origin of the nonlinearity is very different.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信