Marco Nicoletto;Davide Panizzon;Alessandro Caria;Nicola Trivellin;Carlo De Santi;Matteo Buffolo;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini
{"title":"硅异质结光伏组件中的裂纹建模:一个真实世界的案例研究","authors":"Marco Nicoletto;Davide Panizzon;Alessandro Caria;Nicola Trivellin;Carlo De Santi;Matteo Buffolo;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini","doi":"10.1109/JPHOTOV.2025.3587887","DOIUrl":null,"url":null,"abstract":"This work investigates the impact of cracks on silicon heterojunction photovoltaic (PV) modules by analyzing their electrical and thermal behavior under low and high current conditions. The analysis was conducted on PV modules affected by a severe hailstorm, which produced hailstones up to 16 cm in diameter, far exceeding the standard test sizes (IEC 61215). A combination of electroluminescence (EL) and infrared (IR) thermography, along with dark and light current–voltage characterization, was employed to examine both hail and operator-induced cracks. The findings revealed that these cracks, which are latent damages not visible to the naked eye but only with EL and IR investigations, lead to localized temperature increase near open circuit voltage, and to a more uniform distributed temperature increase near short circuit conditions. A Simulink/Matlab model was developed to reproduce the thermal behavior of cracked cells in series with intact ones, to reproduce what happens in a real-world scenario. The results emphasize the importance of identifying latent defects in PV modules to ensure long-term reliability, safety, and efficiency, offering insights into their electrical and thermal behavior in low and high current regime.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 5","pages":"639-644"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Cracks in Silicon-Heterojunction Photovoltaic Modules: A Real-World Case Study\",\"authors\":\"Marco Nicoletto;Davide Panizzon;Alessandro Caria;Nicola Trivellin;Carlo De Santi;Matteo Buffolo;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini\",\"doi\":\"10.1109/JPHOTOV.2025.3587887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the impact of cracks on silicon heterojunction photovoltaic (PV) modules by analyzing their electrical and thermal behavior under low and high current conditions. The analysis was conducted on PV modules affected by a severe hailstorm, which produced hailstones up to 16 cm in diameter, far exceeding the standard test sizes (IEC 61215). A combination of electroluminescence (EL) and infrared (IR) thermography, along with dark and light current–voltage characterization, was employed to examine both hail and operator-induced cracks. The findings revealed that these cracks, which are latent damages not visible to the naked eye but only with EL and IR investigations, lead to localized temperature increase near open circuit voltage, and to a more uniform distributed temperature increase near short circuit conditions. A Simulink/Matlab model was developed to reproduce the thermal behavior of cracked cells in series with intact ones, to reproduce what happens in a real-world scenario. The results emphasize the importance of identifying latent defects in PV modules to ensure long-term reliability, safety, and efficiency, offering insights into their electrical and thermal behavior in low and high current regime.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 5\",\"pages\":\"639-644\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11096420/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11096420/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Modeling Cracks in Silicon-Heterojunction Photovoltaic Modules: A Real-World Case Study
This work investigates the impact of cracks on silicon heterojunction photovoltaic (PV) modules by analyzing their electrical and thermal behavior under low and high current conditions. The analysis was conducted on PV modules affected by a severe hailstorm, which produced hailstones up to 16 cm in diameter, far exceeding the standard test sizes (IEC 61215). A combination of electroluminescence (EL) and infrared (IR) thermography, along with dark and light current–voltage characterization, was employed to examine both hail and operator-induced cracks. The findings revealed that these cracks, which are latent damages not visible to the naked eye but only with EL and IR investigations, lead to localized temperature increase near open circuit voltage, and to a more uniform distributed temperature increase near short circuit conditions. A Simulink/Matlab model was developed to reproduce the thermal behavior of cracked cells in series with intact ones, to reproduce what happens in a real-world scenario. The results emphasize the importance of identifying latent defects in PV modules to ensure long-term reliability, safety, and efficiency, offering insights into their electrical and thermal behavior in low and high current regime.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.