基于智能无人机的移动卸载:多目标优化方法

IF 6.7 2区 计算机科学 Q1 TELECOMMUNICATIONS
Farzad H. Panahi;Fereidoun H. Panahi
{"title":"基于智能无人机的移动卸载:多目标优化方法","authors":"Farzad H. Panahi;Fereidoun H. Panahi","doi":"10.1109/TGCN.2024.3524003","DOIUrl":null,"url":null,"abstract":"We explore the use of an uncrewed aerial vehicle (UAV) flying on a circular path to offload mobile data from a ground base station (GBS) to enhance cellular network capacity. The UAV’s performance is constrained by battery life and energy-intensive radio frequency communications. To address this, we jointly optimize energy efficiency (EE) and spectrum efficiency (SE) by adjusting the UAV’s trajectory, speed, and minimum user throughput. The multi-objective optimization problem we propose is complex and non-convex, presenting substantial challenges in finding an optimal solution. We develop a tailored deep reinforcement learning (DRL) approach to address this specific problem. Simulations show that our method effectively balances EE and SE, enhancing UAV-based cellular offloading while maintaining robust performance, even in uncertain and dynamic conditions.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"9 3","pages":"900-909"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent UAV-Based Mobile Offloading: A Multi-Objective Optimization Approach\",\"authors\":\"Farzad H. Panahi;Fereidoun H. Panahi\",\"doi\":\"10.1109/TGCN.2024.3524003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the use of an uncrewed aerial vehicle (UAV) flying on a circular path to offload mobile data from a ground base station (GBS) to enhance cellular network capacity. The UAV’s performance is constrained by battery life and energy-intensive radio frequency communications. To address this, we jointly optimize energy efficiency (EE) and spectrum efficiency (SE) by adjusting the UAV’s trajectory, speed, and minimum user throughput. The multi-objective optimization problem we propose is complex and non-convex, presenting substantial challenges in finding an optimal solution. We develop a tailored deep reinforcement learning (DRL) approach to address this specific problem. Simulations show that our method effectively balances EE and SE, enhancing UAV-based cellular offloading while maintaining robust performance, even in uncertain and dynamic conditions.\",\"PeriodicalId\":13052,\"journal\":{\"name\":\"IEEE Transactions on Green Communications and Networking\",\"volume\":\"9 3\",\"pages\":\"900-909\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Green Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818501/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10818501/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们探索使用在圆形路径上飞行的无人驾驶飞行器(UAV)从地面基站(GBS)卸载移动数据以增强蜂窝网络容量。无人机的性能受到电池寿命和能源密集型射频通信的限制。为了解决这个问题,我们通过调整无人机的轨迹、速度和最小用户吞吐量来共同优化能效(EE)和频谱效率(SE)。我们提出的多目标优化问题是复杂和非凸的,在寻找最优解方面提出了实质性的挑战。我们开发了一种定制的深度强化学习(DRL)方法来解决这个特定的问题。仿真表明,我们的方法有效地平衡了EE和SE,增强了基于无人机的蜂窝卸载,同时保持了鲁棒性,即使在不确定和动态条件下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent UAV-Based Mobile Offloading: A Multi-Objective Optimization Approach
We explore the use of an uncrewed aerial vehicle (UAV) flying on a circular path to offload mobile data from a ground base station (GBS) to enhance cellular network capacity. The UAV’s performance is constrained by battery life and energy-intensive radio frequency communications. To address this, we jointly optimize energy efficiency (EE) and spectrum efficiency (SE) by adjusting the UAV’s trajectory, speed, and minimum user throughput. The multi-objective optimization problem we propose is complex and non-convex, presenting substantial challenges in finding an optimal solution. We develop a tailored deep reinforcement learning (DRL) approach to address this specific problem. Simulations show that our method effectively balances EE and SE, enhancing UAV-based cellular offloading while maintaining robust performance, even in uncertain and dynamic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信