基于合成工程MoSe$_{2}$ -WSe $_{2}$纳米复合材料的室温可调谐BTEX气体检测

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Priyakshi Kalita;Abhik Chanda;Orison Waikhom;Biplob Mondal
{"title":"基于合成工程MoSe$_{2}$ -WSe $_{2}$纳米复合材料的室温可调谐BTEX气体检测","authors":"Priyakshi Kalita;Abhik Chanda;Orison Waikhom;Biplob Mondal","doi":"10.1109/LSENS.2025.3595417","DOIUrl":null,"url":null,"abstract":"The detection of hazardous volatile organic compounds, particularly benzene, toluene, ethylbenzene, and xylene (BTEX), is crucial due to their carcinogenic nature and contribution to environmental pollution. Conventional gas sensors often suffer from high operating temperatures, poor sensitivity and selectivity, and slow response times. To address these limitations, composition-tunable MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>–WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> heterostructures were synthesized via a facile liquid-phase exfoliation (LPE) technique for room-temperature BTEX sensing applications. A comparative investigation was conducted between two distinct compositional ratios: MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>:WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> = 3:1 (n-type dominant) and 1:3 (p-type dominant), to elucidate the role of composition on electrical and sensing behavior. The structural, morphological, and optical properties of the synthesized composites were comprehensively characterized using Raman spectroscopy, FESEM, EDX, XRD, and UV–Vis spectroscopy. The 3:1 sample exhibited dominant MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> Raman features with an estimated bandgap of 1.78 eV, whereas the 1:3 sample showed dominant WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> features with a bandgap of 1.47 eV. Elemental analysis further validated the targeted Mo:W atomic ratios, closely matching the intended 3:1 and 1:3 compositions. Electrical measurements demonstrated a maximum sensor response of 25.74% toward benzene, with a rapid response time of 30 s at a gas concentration of 50 ppm for MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>–WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> composite (1:3). This study provides the first detailed report on composition-dependent BTEX sensing performance of MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>–WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> heterostructures synthesized via LPE. The findings highlight the critical influence of n-/p-type dominance tuning for achieving gas-specific selectivity, offering promising pathways for the development of next-generation, room-temperature, 2D-material-based gas sensors with tailored sensitivity profiles.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable BTEX Gas Detection At Room Temperature via Composition Engineered MoSe$_{2}$–WSe$_{2}$ Nanocomposites\",\"authors\":\"Priyakshi Kalita;Abhik Chanda;Orison Waikhom;Biplob Mondal\",\"doi\":\"10.1109/LSENS.2025.3595417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of hazardous volatile organic compounds, particularly benzene, toluene, ethylbenzene, and xylene (BTEX), is crucial due to their carcinogenic nature and contribution to environmental pollution. Conventional gas sensors often suffer from high operating temperatures, poor sensitivity and selectivity, and slow response times. To address these limitations, composition-tunable MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>–WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> heterostructures were synthesized via a facile liquid-phase exfoliation (LPE) technique for room-temperature BTEX sensing applications. A comparative investigation was conducted between two distinct compositional ratios: MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>:WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> = 3:1 (n-type dominant) and 1:3 (p-type dominant), to elucidate the role of composition on electrical and sensing behavior. The structural, morphological, and optical properties of the synthesized composites were comprehensively characterized using Raman spectroscopy, FESEM, EDX, XRD, and UV–Vis spectroscopy. The 3:1 sample exhibited dominant MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> Raman features with an estimated bandgap of 1.78 eV, whereas the 1:3 sample showed dominant WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> features with a bandgap of 1.47 eV. Elemental analysis further validated the targeted Mo:W atomic ratios, closely matching the intended 3:1 and 1:3 compositions. Electrical measurements demonstrated a maximum sensor response of 25.74% toward benzene, with a rapid response time of 30 s at a gas concentration of 50 ppm for MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>–WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> composite (1:3). This study provides the first detailed report on composition-dependent BTEX sensing performance of MoSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>–WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> heterostructures synthesized via LPE. The findings highlight the critical influence of n-/p-type dominance tuning for achieving gas-specific selectivity, offering promising pathways for the development of next-generation, room-temperature, 2D-material-based gas sensors with tailored sensitivity profiles.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 9\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11108301/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11108301/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

有害挥发性有机化合物,特别是苯、甲苯、乙苯和二甲苯(BTEX)的检测,由于其致癌性和对环境污染的贡献,至关重要。传统的气体传感器通常工作温度高,灵敏度和选择性差,响应时间慢。为了解决这些限制,通过易液相剥离(LPE)技术合成了成分可调的MoSe$_{2}$ -WSe $_{2}$异质结构,用于室温BTEX传感应用。对比研究了MoSe$_{2}$:WSe$_{2}$ = 3:1 (n型优势)和1:3 (p型优势)两种不同成分配比对电和传感行为的影响。利用拉曼光谱、FESEM、EDX、XRD和UV-Vis光谱对合成的复合材料的结构、形貌和光学性能进行了全面表征。3:1的样品主要表现为MoSe$_{2}$ Raman特征,估计带隙为1.78 eV,而1:3的样品主要表现为WSe$_{2}$ Raman特征,估计带隙为1.47 eV。元素分析进一步验证了目标Mo:W原子比,与预期的3:1和1:3组成紧密匹配。电学测量表明,传感器对苯的最大响应为25.74%,在气体浓度为50 ppm时,对MoSe$_{2}$ -WSe $_{2}$复合材料(1:3)的快速响应时间为30 s。本研究首次详细报道了LPE合成的MoSe$_{2}$ -WSe $_{2}$异质结构的BTEX传感性能。研究结果强调了n /p型优势调谐对实现气体特异性选择性的关键影响,为开发具有定制灵敏度剖面的下一代室温2d材料气体传感器提供了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable BTEX Gas Detection At Room Temperature via Composition Engineered MoSe$_{2}$–WSe$_{2}$ Nanocomposites
The detection of hazardous volatile organic compounds, particularly benzene, toluene, ethylbenzene, and xylene (BTEX), is crucial due to their carcinogenic nature and contribution to environmental pollution. Conventional gas sensors often suffer from high operating temperatures, poor sensitivity and selectivity, and slow response times. To address these limitations, composition-tunable MoSe$_{2}$–WSe$_{2}$ heterostructures were synthesized via a facile liquid-phase exfoliation (LPE) technique for room-temperature BTEX sensing applications. A comparative investigation was conducted between two distinct compositional ratios: MoSe$_{2}$:WSe$_{2}$ = 3:1 (n-type dominant) and 1:3 (p-type dominant), to elucidate the role of composition on electrical and sensing behavior. The structural, morphological, and optical properties of the synthesized composites were comprehensively characterized using Raman spectroscopy, FESEM, EDX, XRD, and UV–Vis spectroscopy. The 3:1 sample exhibited dominant MoSe$_{2}$ Raman features with an estimated bandgap of 1.78 eV, whereas the 1:3 sample showed dominant WSe$_{2}$ features with a bandgap of 1.47 eV. Elemental analysis further validated the targeted Mo:W atomic ratios, closely matching the intended 3:1 and 1:3 compositions. Electrical measurements demonstrated a maximum sensor response of 25.74% toward benzene, with a rapid response time of 30 s at a gas concentration of 50 ppm for MoSe$_{2}$–WSe$_{2}$ composite (1:3). This study provides the first detailed report on composition-dependent BTEX sensing performance of MoSe$_{2}$–WSe$_{2}$ heterostructures synthesized via LPE. The findings highlight the critical influence of n-/p-type dominance tuning for achieving gas-specific selectivity, offering promising pathways for the development of next-generation, room-temperature, 2D-material-based gas sensors with tailored sensitivity profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信