Lu Zhou , Chao Zuo , Bin Du , Jie Min , Yang Wang , Xiangchun Li , Wen-Yong Lai
{"title":"低成本偶氮胺基非富勒烯受体增强有机太阳能电池的光电性能","authors":"Lu Zhou , Chao Zuo , Bin Du , Jie Min , Yang Wang , Xiangchun Li , Wen-Yong Lai","doi":"10.1016/j.orgel.2025.107326","DOIUrl":null,"url":null,"abstract":"<div><div>Most of non-fullerene acceptors used in organic solar cells are synthesized through cross-coupling reactions, which require expensive transition metal catalysts, harsh reaction conditions and complex purification processes, making large-scale production high cost. Here, two azomethine-based perylene diimides (PDIs) are designed and synthesized through a simple and economical Schiff base condensation reaction with water as the only by-product. As the non-fullerene acceptors for organic solar cells, power conversion efficiencies exceeding 4.3 % were reached. Furthermore, the cost estimations show that the material cost of azomethine-based PDIs is about two orders of magnitude lower. In addition, the synthesis of azomethine-based PDIs also reduces the toxic chemical waste, thus greatly reducing the environmental impact. Our results pave the way for low-cost, environmentally friendly and efficient non-fullerene acceptors.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"146 ","pages":"Article 107326"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photovoltaic performance of organic solar cells with low cost azomethine-based non-fullerene acceptors\",\"authors\":\"Lu Zhou , Chao Zuo , Bin Du , Jie Min , Yang Wang , Xiangchun Li , Wen-Yong Lai\",\"doi\":\"10.1016/j.orgel.2025.107326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most of non-fullerene acceptors used in organic solar cells are synthesized through cross-coupling reactions, which require expensive transition metal catalysts, harsh reaction conditions and complex purification processes, making large-scale production high cost. Here, two azomethine-based perylene diimides (PDIs) are designed and synthesized through a simple and economical Schiff base condensation reaction with water as the only by-product. As the non-fullerene acceptors for organic solar cells, power conversion efficiencies exceeding 4.3 % were reached. Furthermore, the cost estimations show that the material cost of azomethine-based PDIs is about two orders of magnitude lower. In addition, the synthesis of azomethine-based PDIs also reduces the toxic chemical waste, thus greatly reducing the environmental impact. Our results pave the way for low-cost, environmentally friendly and efficient non-fullerene acceptors.</div></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"146 \",\"pages\":\"Article 107326\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119925001326\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925001326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced photovoltaic performance of organic solar cells with low cost azomethine-based non-fullerene acceptors
Most of non-fullerene acceptors used in organic solar cells are synthesized through cross-coupling reactions, which require expensive transition metal catalysts, harsh reaction conditions and complex purification processes, making large-scale production high cost. Here, two azomethine-based perylene diimides (PDIs) are designed and synthesized through a simple and economical Schiff base condensation reaction with water as the only by-product. As the non-fullerene acceptors for organic solar cells, power conversion efficiencies exceeding 4.3 % were reached. Furthermore, the cost estimations show that the material cost of azomethine-based PDIs is about two orders of magnitude lower. In addition, the synthesis of azomethine-based PDIs also reduces the toxic chemical waste, thus greatly reducing the environmental impact. Our results pave the way for low-cost, environmentally friendly and efficient non-fullerene acceptors.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.