利用机器学习和遗传优化的人工智能驱动控制算法增强自适应街巷的视觉舒适性

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Mohammad Tabatabaei Manesh , Mohammad Rajaian Hoonejani , Samira Ghafari Gousheh , Alireza Abdolmaleki , Arman Nikkhah Dehnavi , Atefeh Shahrashoob
{"title":"利用机器学习和遗传优化的人工智能驱动控制算法增强自适应街巷的视觉舒适性","authors":"Mohammad Tabatabaei Manesh ,&nbsp;Mohammad Rajaian Hoonejani ,&nbsp;Samira Ghafari Gousheh ,&nbsp;Alireza Abdolmaleki ,&nbsp;Arman Nikkhah Dehnavi ,&nbsp;Atefeh Shahrashoob","doi":"10.1016/j.autcon.2025.106474","DOIUrl":null,"url":null,"abstract":"<div><div>Effective management of daylight and visual comfort in office spaces remains a challenge, as existing shading systems often lack adaptability to changing environmental conditions and occupant needs. This paper presents an AI-driven real-time shading control algorithm that optimizes visual comfort using machine learning-based surrogate models and evolutionary optimization. A non-conventional adaptive façade was simulated using Radiance and Ladybug Tools across nine U.S. climates. Four machine learning models were evaluated for predicting Task Illuminance (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) and Vertical Eye Illuminance (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span>), with Extra Trees achieving the highest accuracy (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.95). A Non-dominated Sorting Genetic Algorithm II (NSGA-II) balances glare reduction and daylight utilization by optimizing façade configurations in real time. In contrast to prior approaches constrained to fixed geometries and single-objective control, this paper introduces a generalizable multi-objective control framework. Results show that AI-driven optimization significantly improves adaptive façade performance, offering a scalable solution for intelligent daylight and comfort management.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"179 ","pages":"Article 106474"},"PeriodicalIF":11.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-driven control algorithm using machine learning and genetic optimization for enhancing visual comfort in adaptive façades\",\"authors\":\"Mohammad Tabatabaei Manesh ,&nbsp;Mohammad Rajaian Hoonejani ,&nbsp;Samira Ghafari Gousheh ,&nbsp;Alireza Abdolmaleki ,&nbsp;Arman Nikkhah Dehnavi ,&nbsp;Atefeh Shahrashoob\",\"doi\":\"10.1016/j.autcon.2025.106474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective management of daylight and visual comfort in office spaces remains a challenge, as existing shading systems often lack adaptability to changing environmental conditions and occupant needs. This paper presents an AI-driven real-time shading control algorithm that optimizes visual comfort using machine learning-based surrogate models and evolutionary optimization. A non-conventional adaptive façade was simulated using Radiance and Ladybug Tools across nine U.S. climates. Four machine learning models were evaluated for predicting Task Illuminance (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) and Vertical Eye Illuminance (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span>), with Extra Trees achieving the highest accuracy (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.95). A Non-dominated Sorting Genetic Algorithm II (NSGA-II) balances glare reduction and daylight utilization by optimizing façade configurations in real time. In contrast to prior approaches constrained to fixed geometries and single-objective control, this paper introduces a generalizable multi-objective control framework. Results show that AI-driven optimization significantly improves adaptive façade performance, offering a scalable solution for intelligent daylight and comfort management.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"179 \",\"pages\":\"Article 106474\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092658052500514X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092658052500514X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有效管理办公空间的日光和视觉舒适度仍然是一个挑战,因为现有的遮阳系统往往缺乏对不断变化的环境条件和居住者需求的适应性。本文提出了一种人工智能驱动的实时着色控制算法,该算法使用基于机器学习的代理模型和进化优化来优化视觉舒适性。使用Radiance和Ladybug Tools在美国九个气候区模拟了一个非常规的自适应farade。评估了四种机器学习模型用于预测任务照度(Et)和垂直眼照度(Ev),其中Extra Trees的准确率最高(R2 = 0.95)。非支配排序遗传算法II (NSGA-II)通过实时优化立面配置来平衡眩光减少和日光利用。相对于以往的约束于固定几何形状和单目标控制的方法,本文引入了一种可推广的多目标控制框架。结果表明,人工智能驱动的优化显著提高了自适应照明性能,为智能日光和舒适管理提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-driven control algorithm using machine learning and genetic optimization for enhancing visual comfort in adaptive façades
Effective management of daylight and visual comfort in office spaces remains a challenge, as existing shading systems often lack adaptability to changing environmental conditions and occupant needs. This paper presents an AI-driven real-time shading control algorithm that optimizes visual comfort using machine learning-based surrogate models and evolutionary optimization. A non-conventional adaptive façade was simulated using Radiance and Ladybug Tools across nine U.S. climates. Four machine learning models were evaluated for predicting Task Illuminance (Et) and Vertical Eye Illuminance (Ev), with Extra Trees achieving the highest accuracy (R2 = 0.95). A Non-dominated Sorting Genetic Algorithm II (NSGA-II) balances glare reduction and daylight utilization by optimizing façade configurations in real time. In contrast to prior approaches constrained to fixed geometries and single-objective control, this paper introduces a generalizable multi-objective control framework. Results show that AI-driven optimization significantly improves adaptive façade performance, offering a scalable solution for intelligent daylight and comfort management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信