广义Riemann-Hilbert-Birkhoff分解与一类新的高阶可积层次

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
H. Aratyn , C.P. Constantinidis , J.F. Gomes , T.C. Santiago , A.H. Zimerman
{"title":"广义Riemann-Hilbert-Birkhoff分解与一类新的高阶可积层次","authors":"H. Aratyn ,&nbsp;C.P. Constantinidis ,&nbsp;J.F. Gomes ,&nbsp;T.C. Santiago ,&nbsp;A.H. Zimerman","doi":"10.1016/j.nuclphysb.2025.117080","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a generalized Riemann-Hilbert-Birkhoff decomposition that expands the standard integrable hierarchy formalism in two fundamental ways: it allows for integer powers of Lax matrix components in the flow equations to be increased as compared to conventional models, and it incorporates constant non-zero vacuum (background) solutions.</div><div>Two additional parameters control these features. The first one defines the grade of a semisimple element that underpins the algebraic construction of the hierarchy, where a grade-one semi-simple element recovers known hierarchies such as mKdV and AKNS. The second parameter distinguishes between zero and non-zero constant background (vacuum) configurations.</div><div>Additionally, we introduce a third parameter associated with an ambiguity in the definition of the grade-zero component of the dressing matrices. While not affecting the decomposition itself, this parameter classifies different gauge realizations of the integrable equations (like for example, Kaup-Newell, Gerdjikov-Ivanov, Chen-Lee-Liu models).</div><div>For various values of these parameters, we construct and analyze corresponding integrable models in a unified universal manner demonstrating the broad applicability and generative power of the extended formalism.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117080"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Riemann-Hilbert-Birkhoff decomposition and a new class of higher grading integrable hierarchies\",\"authors\":\"H. Aratyn ,&nbsp;C.P. Constantinidis ,&nbsp;J.F. Gomes ,&nbsp;T.C. Santiago ,&nbsp;A.H. Zimerman\",\"doi\":\"10.1016/j.nuclphysb.2025.117080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a generalized Riemann-Hilbert-Birkhoff decomposition that expands the standard integrable hierarchy formalism in two fundamental ways: it allows for integer powers of Lax matrix components in the flow equations to be increased as compared to conventional models, and it incorporates constant non-zero vacuum (background) solutions.</div><div>Two additional parameters control these features. The first one defines the grade of a semisimple element that underpins the algebraic construction of the hierarchy, where a grade-one semi-simple element recovers known hierarchies such as mKdV and AKNS. The second parameter distinguishes between zero and non-zero constant background (vacuum) configurations.</div><div>Additionally, we introduce a third parameter associated with an ambiguity in the definition of the grade-zero component of the dressing matrices. While not affecting the decomposition itself, this parameter classifies different gauge realizations of the integrable equations (like for example, Kaup-Newell, Gerdjikov-Ivanov, Chen-Lee-Liu models).</div><div>For various values of these parameters, we construct and analyze corresponding integrable models in a unified universal manner demonstrating the broad applicability and generative power of the extended formalism.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1018 \",\"pages\":\"Article 117080\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325002895\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002895","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种广义的Riemann-Hilbert-Birkhoff分解,它从两个基本方面扩展了标准的可积层次形式:与传统模型相比,它允许流动方程中Lax矩阵分量的整数幂增加,并且它包含恒定的非零真空(背景)解。另外两个参数控制这些特性。第一个定义了支撑层次结构代数构造的半简单元素的等级,其中一级半简单元素恢复已知的层次结构,如mKdV和AKNS。第二个参数区分零和非零常数背景(真空)配置。此外,我们还引入了第三个参数,该参数与修整矩阵的零级分量的定义中的模糊性有关。虽然不影响分解本身,但该参数对可积方程的不同规范实现进行分类(例如,kap - newell, Gerdjikov-Ivanov, Chen-Lee-Liu模型)。对于这些参数的不同取值,我们以统一的通用方式构造并分析了相应的可积模型,证明了扩展形式论的广泛适用性和生成能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Riemann-Hilbert-Birkhoff decomposition and a new class of higher grading integrable hierarchies
We propose a generalized Riemann-Hilbert-Birkhoff decomposition that expands the standard integrable hierarchy formalism in two fundamental ways: it allows for integer powers of Lax matrix components in the flow equations to be increased as compared to conventional models, and it incorporates constant non-zero vacuum (background) solutions.
Two additional parameters control these features. The first one defines the grade of a semisimple element that underpins the algebraic construction of the hierarchy, where a grade-one semi-simple element recovers known hierarchies such as mKdV and AKNS. The second parameter distinguishes between zero and non-zero constant background (vacuum) configurations.
Additionally, we introduce a third parameter associated with an ambiguity in the definition of the grade-zero component of the dressing matrices. While not affecting the decomposition itself, this parameter classifies different gauge realizations of the integrable equations (like for example, Kaup-Newell, Gerdjikov-Ivanov, Chen-Lee-Liu models).
For various values of these parameters, we construct and analyze corresponding integrable models in a unified universal manner demonstrating the broad applicability and generative power of the extended formalism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信