可数连续Richter-Peleg多效用表示的表征

IF 1.5 4区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Gianni Bosi , Esteban Induráin , Ana Munárriz , Yeray R. Rincón
{"title":"可数连续Richter-Peleg多效用表示的表征","authors":"Gianni Bosi ,&nbsp;Esteban Induráin ,&nbsp;Ana Munárriz ,&nbsp;Yeray R. Rincón","doi":"10.1016/j.jmp.2025.102940","DOIUrl":null,"url":null,"abstract":"<div><div>This paper contributes to the theoretical literature on decision models where agents may encounter challenges in comparing alternatives. We introduce a characterization of countable Richter–Peleg multi-utility representations, both semicontinuous (upper and lower) and continuous, within preorders that may not be total. The proposed theorems provide a comprehensive mathematical framework, complementing previous results of Alcantud et al. and Bosi on countable multi-utility representations. Our characterizations establish necessary and sufficient conditions through topological properties and constructive methods via indicator functions. Furthermore, we introduce a topological framework aligned with the property of strong local non-satiation and provide a novel theorem containing sufficient conditions for the existence of countable upper semi-continuous multi-utility representations of a preorder. The results demonstrate that preference representations can be achieved using countably many functions rather than uncountable families, with implications for computational tractability and the identification of maximal elements in optimization contexts.</div></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"126 ","pages":"Article 102940"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of countable and continuous Richter–Peleg multi-utility representations\",\"authors\":\"Gianni Bosi ,&nbsp;Esteban Induráin ,&nbsp;Ana Munárriz ,&nbsp;Yeray R. Rincón\",\"doi\":\"10.1016/j.jmp.2025.102940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper contributes to the theoretical literature on decision models where agents may encounter challenges in comparing alternatives. We introduce a characterization of countable Richter–Peleg multi-utility representations, both semicontinuous (upper and lower) and continuous, within preorders that may not be total. The proposed theorems provide a comprehensive mathematical framework, complementing previous results of Alcantud et al. and Bosi on countable multi-utility representations. Our characterizations establish necessary and sufficient conditions through topological properties and constructive methods via indicator functions. Furthermore, we introduce a topological framework aligned with the property of strong local non-satiation and provide a novel theorem containing sufficient conditions for the existence of countable upper semi-continuous multi-utility representations of a preorder. The results demonstrate that preference representations can be achieved using countably many functions rather than uncountable families, with implications for computational tractability and the identification of maximal elements in optimization contexts.</div></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"126 \",\"pages\":\"Article 102940\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249625000410\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249625000410","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文对决策模型的理论文献做出了贡献,其中代理在比较备选方案时可能遇到挑战。我们引入了可计数Richter-Peleg多效用表示的特征,包括半连续(上和下)和连续,在可能不是总数的预订中。提出的定理提供了一个全面的数学框架,补充了Alcantud等人和Bosi之前关于可数多效用表示的结果。我们的刻画通过拓扑性质和构造方法通过指示函数建立了充分必要条件。此外,我们引入了一个具有强局部不满足性质的拓扑框架,并给出了一个新的定理,该定理包含了一个预序的可计数上半连续多效用表示存在的充分条件。结果表明,偏好表示可以使用可数的多个函数而不是不可数的族来实现,这对优化环境中的计算可追溯性和最大元素的识别具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of countable and continuous Richter–Peleg multi-utility representations
This paper contributes to the theoretical literature on decision models where agents may encounter challenges in comparing alternatives. We introduce a characterization of countable Richter–Peleg multi-utility representations, both semicontinuous (upper and lower) and continuous, within preorders that may not be total. The proposed theorems provide a comprehensive mathematical framework, complementing previous results of Alcantud et al. and Bosi on countable multi-utility representations. Our characterizations establish necessary and sufficient conditions through topological properties and constructive methods via indicator functions. Furthermore, we introduce a topological framework aligned with the property of strong local non-satiation and provide a novel theorem containing sufficient conditions for the existence of countable upper semi-continuous multi-utility representations of a preorder. The results demonstrate that preference representations can be achieved using countably many functions rather than uncountable families, with implications for computational tractability and the identification of maximal elements in optimization contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Psychology
Journal of Mathematical Psychology 医学-数学跨学科应用
CiteScore
3.70
自引率
11.10%
发文量
37
审稿时长
20.2 weeks
期刊介绍: The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome. Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation. The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology. Research Areas include: • Models for sensation and perception, learning, memory and thinking • Fundamental measurement and scaling • Decision making • Neural modeling and networks • Psychophysics and signal detection • Neuropsychological theories • Psycholinguistics • Motivational dynamics • Animal behavior • Psychometric theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信