Gianni Bosi , Esteban Induráin , Ana Munárriz , Yeray R. Rincón
{"title":"可数连续Richter-Peleg多效用表示的表征","authors":"Gianni Bosi , Esteban Induráin , Ana Munárriz , Yeray R. Rincón","doi":"10.1016/j.jmp.2025.102940","DOIUrl":null,"url":null,"abstract":"<div><div>This paper contributes to the theoretical literature on decision models where agents may encounter challenges in comparing alternatives. We introduce a characterization of countable Richter–Peleg multi-utility representations, both semicontinuous (upper and lower) and continuous, within preorders that may not be total. The proposed theorems provide a comprehensive mathematical framework, complementing previous results of Alcantud et al. and Bosi on countable multi-utility representations. Our characterizations establish necessary and sufficient conditions through topological properties and constructive methods via indicator functions. Furthermore, we introduce a topological framework aligned with the property of strong local non-satiation and provide a novel theorem containing sufficient conditions for the existence of countable upper semi-continuous multi-utility representations of a preorder. The results demonstrate that preference representations can be achieved using countably many functions rather than uncountable families, with implications for computational tractability and the identification of maximal elements in optimization contexts.</div></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"126 ","pages":"Article 102940"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of countable and continuous Richter–Peleg multi-utility representations\",\"authors\":\"Gianni Bosi , Esteban Induráin , Ana Munárriz , Yeray R. Rincón\",\"doi\":\"10.1016/j.jmp.2025.102940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper contributes to the theoretical literature on decision models where agents may encounter challenges in comparing alternatives. We introduce a characterization of countable Richter–Peleg multi-utility representations, both semicontinuous (upper and lower) and continuous, within preorders that may not be total. The proposed theorems provide a comprehensive mathematical framework, complementing previous results of Alcantud et al. and Bosi on countable multi-utility representations. Our characterizations establish necessary and sufficient conditions through topological properties and constructive methods via indicator functions. Furthermore, we introduce a topological framework aligned with the property of strong local non-satiation and provide a novel theorem containing sufficient conditions for the existence of countable upper semi-continuous multi-utility representations of a preorder. The results demonstrate that preference representations can be achieved using countably many functions rather than uncountable families, with implications for computational tractability and the identification of maximal elements in optimization contexts.</div></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"126 \",\"pages\":\"Article 102940\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249625000410\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249625000410","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Characterization of countable and continuous Richter–Peleg multi-utility representations
This paper contributes to the theoretical literature on decision models where agents may encounter challenges in comparing alternatives. We introduce a characterization of countable Richter–Peleg multi-utility representations, both semicontinuous (upper and lower) and continuous, within preorders that may not be total. The proposed theorems provide a comprehensive mathematical framework, complementing previous results of Alcantud et al. and Bosi on countable multi-utility representations. Our characterizations establish necessary and sufficient conditions through topological properties and constructive methods via indicator functions. Furthermore, we introduce a topological framework aligned with the property of strong local non-satiation and provide a novel theorem containing sufficient conditions for the existence of countable upper semi-continuous multi-utility representations of a preorder. The results demonstrate that preference representations can be achieved using countably many functions rather than uncountable families, with implications for computational tractability and the identification of maximal elements in optimization contexts.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory