Davide Palma , Kevin U. Antela , Alessandra Bianco Prevot , M. Luisa Cervera , Angel Morales-Rubio , Roberto Sáez-Hernández
{"title":"应用于光fenton工艺的人工神经网络:一种创新的废水处理方法","authors":"Davide Palma , Kevin U. Antela , Alessandra Bianco Prevot , M. Luisa Cervera , Angel Morales-Rubio , Roberto Sáez-Hernández","doi":"10.1016/j.wse.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) is a revolutionizing problem-solver across various domains, including scientific research. Its application to chemical processes holds remarkable potential for rapid optimization of protocols and methods. A notable application of AI is in the photo-Fenton degradation of organic compounds. Despite the high novelty and recent surge of interest in this area, a comprehensive synthesis of existing literature on AI applications in the photo-Fenton process is lacking. This review aims to bridge this gap by providing an in-depth summary of the state-of-the-art use of artificial neural networks (ANN) in the photo-Fenton process, with the goal of aiding researchers in the water treatment field to identify the most crucial and relevant variables. It examines the types and architectures of ANNs, input and output variables, and the efficiency of these networks. The findings reveal a rapidly expanding field with increasing publications highlighting AI's potential to optimize the photo-Fenton process. This review also discusses the benefits and drawbacks of using ANNs, emphasizing the need for further research to advance this promising area.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"18 3","pages":"Pages 324-334"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks applied to photo-Fenton process: An innovative approach to wastewater treatment\",\"authors\":\"Davide Palma , Kevin U. Antela , Alessandra Bianco Prevot , M. Luisa Cervera , Angel Morales-Rubio , Roberto Sáez-Hernández\",\"doi\":\"10.1016/j.wse.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial intelligence (AI) is a revolutionizing problem-solver across various domains, including scientific research. Its application to chemical processes holds remarkable potential for rapid optimization of protocols and methods. A notable application of AI is in the photo-Fenton degradation of organic compounds. Despite the high novelty and recent surge of interest in this area, a comprehensive synthesis of existing literature on AI applications in the photo-Fenton process is lacking. This review aims to bridge this gap by providing an in-depth summary of the state-of-the-art use of artificial neural networks (ANN) in the photo-Fenton process, with the goal of aiding researchers in the water treatment field to identify the most crucial and relevant variables. It examines the types and architectures of ANNs, input and output variables, and the efficiency of these networks. The findings reveal a rapidly expanding field with increasing publications highlighting AI's potential to optimize the photo-Fenton process. This review also discusses the benefits and drawbacks of using ANNs, emphasizing the need for further research to advance this promising area.</div></div>\",\"PeriodicalId\":23628,\"journal\":{\"name\":\"Water science and engineering\",\"volume\":\"18 3\",\"pages\":\"Pages 324-334\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water science and engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674237025000304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237025000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Artificial neural networks applied to photo-Fenton process: An innovative approach to wastewater treatment
Artificial intelligence (AI) is a revolutionizing problem-solver across various domains, including scientific research. Its application to chemical processes holds remarkable potential for rapid optimization of protocols and methods. A notable application of AI is in the photo-Fenton degradation of organic compounds. Despite the high novelty and recent surge of interest in this area, a comprehensive synthesis of existing literature on AI applications in the photo-Fenton process is lacking. This review aims to bridge this gap by providing an in-depth summary of the state-of-the-art use of artificial neural networks (ANN) in the photo-Fenton process, with the goal of aiding researchers in the water treatment field to identify the most crucial and relevant variables. It examines the types and architectures of ANNs, input and output variables, and the efficiency of these networks. The findings reveal a rapidly expanding field with increasing publications highlighting AI's potential to optimize the photo-Fenton process. This review also discusses the benefits and drawbacks of using ANNs, emphasizing the need for further research to advance this promising area.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.