{"title":"从代谢组学到输血相关免疫调节","authors":"Angelo D’Alessandro , James C Zimring","doi":"10.1016/j.coi.2025.102646","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of review</h3><div>This review summarizes recent advances in metabolomics that have enhanced our understanding of transfusion-related immunomodulation (TRIM), highlighting how biochemical changes in stored blood products — with a focus on packed red blood cells — affect recipient immune responses.</div></div><div><h3>Recent findings</h3><div>Metabolomics has revealed critical biochemical shifts — termed storage lesions — in blood products, notably accumulation of oxidized lipids, extracellular vesicles, and hemolysis-derived molecules, such as free heme and iron. These metabolites influence recipient immunity by triggering both inflammatory and immunosuppressive pathways, mediated through mechanisms involving redox imbalance, inflammasome activation, and modulation of immune cell metabolism. Studies underscore that the immunological outcomes of transfusions are shaped not only by storage duration but also by donor-specific metabolic profiles influenced by genetics, diet, and environmental exposures. Metabolic profiling has identified novel biomarkers, such as hypoxanthine and kynurenine, which correlate with transfusion quality and immunological impact.</div></div><div><h3>Summary</h3><div>Metabolomics has transformed our understanding of TRIM, emphasizing that transfusion is an active biochemical intervention rather than passive fluid replacement. Moving forward, integrating metabolomic insights into transfusion medicine promises personalized strategies — selecting blood units based on metabolic rather than chronological age and donor characteristics — thus improving safety and clinical outcomes in transfusion recipients.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":"96 ","pages":"Article 102646"},"PeriodicalIF":5.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From metabolomics to transfusion-associated immunomodulation\",\"authors\":\"Angelo D’Alessandro , James C Zimring\",\"doi\":\"10.1016/j.coi.2025.102646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of review</h3><div>This review summarizes recent advances in metabolomics that have enhanced our understanding of transfusion-related immunomodulation (TRIM), highlighting how biochemical changes in stored blood products — with a focus on packed red blood cells — affect recipient immune responses.</div></div><div><h3>Recent findings</h3><div>Metabolomics has revealed critical biochemical shifts — termed storage lesions — in blood products, notably accumulation of oxidized lipids, extracellular vesicles, and hemolysis-derived molecules, such as free heme and iron. These metabolites influence recipient immunity by triggering both inflammatory and immunosuppressive pathways, mediated through mechanisms involving redox imbalance, inflammasome activation, and modulation of immune cell metabolism. Studies underscore that the immunological outcomes of transfusions are shaped not only by storage duration but also by donor-specific metabolic profiles influenced by genetics, diet, and environmental exposures. Metabolic profiling has identified novel biomarkers, such as hypoxanthine and kynurenine, which correlate with transfusion quality and immunological impact.</div></div><div><h3>Summary</h3><div>Metabolomics has transformed our understanding of TRIM, emphasizing that transfusion is an active biochemical intervention rather than passive fluid replacement. Moving forward, integrating metabolomic insights into transfusion medicine promises personalized strategies — selecting blood units based on metabolic rather than chronological age and donor characteristics — thus improving safety and clinical outcomes in transfusion recipients.</div></div>\",\"PeriodicalId\":11361,\"journal\":{\"name\":\"Current Opinion in Immunology\",\"volume\":\"96 \",\"pages\":\"Article 102646\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952791525001220\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791525001220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
From metabolomics to transfusion-associated immunomodulation
Purpose of review
This review summarizes recent advances in metabolomics that have enhanced our understanding of transfusion-related immunomodulation (TRIM), highlighting how biochemical changes in stored blood products — with a focus on packed red blood cells — affect recipient immune responses.
Recent findings
Metabolomics has revealed critical biochemical shifts — termed storage lesions — in blood products, notably accumulation of oxidized lipids, extracellular vesicles, and hemolysis-derived molecules, such as free heme and iron. These metabolites influence recipient immunity by triggering both inflammatory and immunosuppressive pathways, mediated through mechanisms involving redox imbalance, inflammasome activation, and modulation of immune cell metabolism. Studies underscore that the immunological outcomes of transfusions are shaped not only by storage duration but also by donor-specific metabolic profiles influenced by genetics, diet, and environmental exposures. Metabolic profiling has identified novel biomarkers, such as hypoxanthine and kynurenine, which correlate with transfusion quality and immunological impact.
Summary
Metabolomics has transformed our understanding of TRIM, emphasizing that transfusion is an active biochemical intervention rather than passive fluid replacement. Moving forward, integrating metabolomic insights into transfusion medicine promises personalized strategies — selecting blood units based on metabolic rather than chronological age and donor characteristics — thus improving safety and clinical outcomes in transfusion recipients.
期刊介绍:
Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students.
Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.