Chuanwen Qian , Wenjun Ni , Chunyong Yang , Zhongke Zhao , Likang Zhang , Sixiang Ran , Chenyu Wang , Ping Lu , Perry Ping Shum
{"title":"用于高灵敏度痕量乙炔传感的三维光路扩展葫芦型光声电池","authors":"Chuanwen Qian , Wenjun Ni , Chunyong Yang , Zhongke Zhao , Likang Zhang , Sixiang Ran , Chenyu Wang , Ping Lu , Perry Ping Shum","doi":"10.1016/j.pacs.2025.100762","DOIUrl":null,"url":null,"abstract":"<div><div>A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment. It creates a non-periodic three-dimensional (3D) optical trajectory, significantly enhancing light-molecule interactions. GTPAC achieves an exceptionally high sensitivity of up to 3.36 μV/ppm using a distributed feedback butterfly laser with central wavelength of 1532 nm (±1.5 nm) to detect acetylene gas. When the integration time is extended to 100 s, the minimum detection limit is as low as 0.59 ppb. Moreover, its flexible design and broad spectral compatibility enable significant potential for extension to other gases, such as methane and nitrogen oxides, offering new prospects for ultra-sensitive trace gas detection.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"45 ","pages":"Article 100762"},"PeriodicalIF":6.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional optical path extended gourd-type photoacoustic cell for highly sensitive trace acetylene sensing\",\"authors\":\"Chuanwen Qian , Wenjun Ni , Chunyong Yang , Zhongke Zhao , Likang Zhang , Sixiang Ran , Chenyu Wang , Ping Lu , Perry Ping Shum\",\"doi\":\"10.1016/j.pacs.2025.100762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment. It creates a non-periodic three-dimensional (3D) optical trajectory, significantly enhancing light-molecule interactions. GTPAC achieves an exceptionally high sensitivity of up to 3.36 μV/ppm using a distributed feedback butterfly laser with central wavelength of 1532 nm (±1.5 nm) to detect acetylene gas. When the integration time is extended to 100 s, the minimum detection limit is as low as 0.59 ppb. Moreover, its flexible design and broad spectral compatibility enable significant potential for extension to other gases, such as methane and nitrogen oxides, offering new prospects for ultra-sensitive trace gas detection.</div></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"45 \",\"pages\":\"Article 100762\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597925000850\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000850","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment. It creates a non-periodic three-dimensional (3D) optical trajectory, significantly enhancing light-molecule interactions. GTPAC achieves an exceptionally high sensitivity of up to 3.36 μV/ppm using a distributed feedback butterfly laser with central wavelength of 1532 nm (±1.5 nm) to detect acetylene gas. When the integration time is extended to 100 s, the minimum detection limit is as low as 0.59 ppb. Moreover, its flexible design and broad spectral compatibility enable significant potential for extension to other gases, such as methane and nitrogen oxides, offering new prospects for ultra-sensitive trace gas detection.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.