Ramon Codina , Hauke Gravenkamp , Sheraz Ahmed Khan
{"title":"基于变分多尺度概念的对流扩散反应方程有限元近似的后验误差估计","authors":"Ramon Codina , Hauke Gravenkamp , Sheraz Ahmed Khan","doi":"10.1016/j.apnum.2025.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employ the variational multiscale (VMS) concept to develop a posteriori error estimates for the stationary convection-diffusion-reaction equation. The variational multiscale method is based on splitting the continuous part of the problem into a resolved scale (coarse scale) and an unresolved scale (fine scale). The unresolved scale (also known as the sub-grid scale) is modeled by choosing it proportional to the component of the residual orthogonal to the finite element space, leading to the orthogonal sub-grid scale (OSGS) method. The idea is then to use the modeled sub-grid scale as an error estimator, considering its contribution in the element interiors and on the edges. We present the results of the a priori analysis and two different strategies for the a posteriori error analysis for the OSGS method. Our proposal is to use a scaled norm of the sub-grid scales as an a posteriori error estimate in the so-called stabilized norm of the problem. This norm has control over the convective term, which is necessary for convection-dominated problems. Numerical examples show the reliable performance of the proposed error estimator compared to other error estimators belonging to the variational multiscale family.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 238-260"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimates for the finite element approximation of the convection–diffusion–reaction equation based on the variational multiscale concept\",\"authors\":\"Ramon Codina , Hauke Gravenkamp , Sheraz Ahmed Khan\",\"doi\":\"10.1016/j.apnum.2025.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we employ the variational multiscale (VMS) concept to develop a posteriori error estimates for the stationary convection-diffusion-reaction equation. The variational multiscale method is based on splitting the continuous part of the problem into a resolved scale (coarse scale) and an unresolved scale (fine scale). The unresolved scale (also known as the sub-grid scale) is modeled by choosing it proportional to the component of the residual orthogonal to the finite element space, leading to the orthogonal sub-grid scale (OSGS) method. The idea is then to use the modeled sub-grid scale as an error estimator, considering its contribution in the element interiors and on the edges. We present the results of the a priori analysis and two different strategies for the a posteriori error analysis for the OSGS method. Our proposal is to use a scaled norm of the sub-grid scales as an a posteriori error estimate in the so-called stabilized norm of the problem. This norm has control over the convective term, which is necessary for convection-dominated problems. Numerical examples show the reliable performance of the proposed error estimator compared to other error estimators belonging to the variational multiscale family.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"218 \",\"pages\":\"Pages 238-260\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016892742500159X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016892742500159X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A posteriori error estimates for the finite element approximation of the convection–diffusion–reaction equation based on the variational multiscale concept
In this study, we employ the variational multiscale (VMS) concept to develop a posteriori error estimates for the stationary convection-diffusion-reaction equation. The variational multiscale method is based on splitting the continuous part of the problem into a resolved scale (coarse scale) and an unresolved scale (fine scale). The unresolved scale (also known as the sub-grid scale) is modeled by choosing it proportional to the component of the residual orthogonal to the finite element space, leading to the orthogonal sub-grid scale (OSGS) method. The idea is then to use the modeled sub-grid scale as an error estimator, considering its contribution in the element interiors and on the edges. We present the results of the a priori analysis and two different strategies for the a posteriori error analysis for the OSGS method. Our proposal is to use a scaled norm of the sub-grid scales as an a posteriori error estimate in the so-called stabilized norm of the problem. This norm has control over the convective term, which is necessary for convection-dominated problems. Numerical examples show the reliable performance of the proposed error estimator compared to other error estimators belonging to the variational multiscale family.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.