Ruitao LI , Kun GONG , Yuanyuan DAI , Qiang NIU , Tiejun LIN , Liangshu ZHONG
{"title":"构建石墨- ceo2界面增强太阳能驱动甲烷干重整的光热活性","authors":"Ruitao LI , Kun GONG , Yuanyuan DAI , Qiang NIU , Tiejun LIN , Liangshu ZHONG","doi":"10.1016/S1872-5813(24)60531-1","DOIUrl":null,"url":null,"abstract":"<div><div>CeO<sub>2</sub> based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane (DRM) reaction, but still suffer from low activity and low light utilization efficiency. This study developed graphite-CeO<sub>2</sub> interfaces to enhance solar-driven photothermal catalytic DRM. Compared with carbon nanotubes-modified CeO<sub>2</sub> (CeO<sub>2</sub>-CNT), graphite-modified CeO<sub>2</sub> (CeO<sub>2</sub>-GRA) constructed graphite-CeO<sub>2</sub> interfaces with distortion in CeO<sub>2</sub>, leading to the formation abundant oxygen vacancies. These graphite-CeO<sub>2</sub> interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers. The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3 ℃, boosting light-to-thermal conversion. The synergy between photogenerated carriers and localized heat enabled Ni/CeO<sub>2</sub>-GRA to achieve a CO production rate of 9985.6 mmol/(g·h) (<em>vs</em>7192.4 mmol/(g·h) for Ni/ CeO<sub>2</sub>) and a light-to-fuel efficiency of 21.8% (<em>vs</em>13.8% for Ni/ CeO<sub>2</sub>). This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 8","pages":"Pages 1137-1147"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing graphite-CeO2 interfaces to enhance the photothermal activity for solar-driven dry reforming of methane\",\"authors\":\"Ruitao LI , Kun GONG , Yuanyuan DAI , Qiang NIU , Tiejun LIN , Liangshu ZHONG\",\"doi\":\"10.1016/S1872-5813(24)60531-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CeO<sub>2</sub> based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane (DRM) reaction, but still suffer from low activity and low light utilization efficiency. This study developed graphite-CeO<sub>2</sub> interfaces to enhance solar-driven photothermal catalytic DRM. Compared with carbon nanotubes-modified CeO<sub>2</sub> (CeO<sub>2</sub>-CNT), graphite-modified CeO<sub>2</sub> (CeO<sub>2</sub>-GRA) constructed graphite-CeO<sub>2</sub> interfaces with distortion in CeO<sub>2</sub>, leading to the formation abundant oxygen vacancies. These graphite-CeO<sub>2</sub> interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers. The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3 ℃, boosting light-to-thermal conversion. The synergy between photogenerated carriers and localized heat enabled Ni/CeO<sub>2</sub>-GRA to achieve a CO production rate of 9985.6 mmol/(g·h) (<em>vs</em>7192.4 mmol/(g·h) for Ni/ CeO<sub>2</sub>) and a light-to-fuel efficiency of 21.8% (<em>vs</em>13.8% for Ni/ CeO<sub>2</sub>). This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.</div></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"53 8\",\"pages\":\"Pages 1137-1147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581324605311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324605311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Constructing graphite-CeO2 interfaces to enhance the photothermal activity for solar-driven dry reforming of methane
CeO2 based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane (DRM) reaction, but still suffer from low activity and low light utilization efficiency. This study developed graphite-CeO2 interfaces to enhance solar-driven photothermal catalytic DRM. Compared with carbon nanotubes-modified CeO2 (CeO2-CNT), graphite-modified CeO2 (CeO2-GRA) constructed graphite-CeO2 interfaces with distortion in CeO2, leading to the formation abundant oxygen vacancies. These graphite-CeO2 interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers. The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3 ℃, boosting light-to-thermal conversion. The synergy between photogenerated carriers and localized heat enabled Ni/CeO2-GRA to achieve a CO production rate of 9985.6 mmol/(g·h) (vs7192.4 mmol/(g·h) for Ni/ CeO2) and a light-to-fuel efficiency of 21.8% (vs13.8% for Ni/ CeO2). This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.