Linyao HUANG , Mi LUO , Tianhua YANG , Chenguang WANG
{"title":"通过过渡金属掺杂调整氧空位,实现高效析氧反应","authors":"Linyao HUANG , Mi LUO , Tianhua YANG , Chenguang WANG","doi":"10.1016/S1872-5813(25)60543-3","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a series of Cr-doped RuO<sub>2</sub>@NC catalysts (Cr<sub>0.1</sub>-RuO<sub>2</sub>@NC, Cr<sub>0.2</sub>-RuO<sub>2</sub>@NC, Cr<sub>0.4</sub>-RuO<sub>2</sub>@NC) with controlled Cr doping (0.5%, 1%, 3%) were prepared to investigate the mechanistic interplay between transition metal doping, oxygen vacancy (O<sub>V</sub>) formation and oxygen evolution reaction (OER) performance. Systematic characterization results reveal that the oxygen vacancy concentration follows a volcano-type trend with increasing Cr content, peaking at 1% Cr doping (Cr<sub>0.2</sub>-RuO<sub>2</sub>@NC). Combined X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirm that Cr doping effectively induces electronic structure reconstruction of RuO<sub>2</sub>, generating high-density oxygen vacancies that serve as electrochemically active sites. The optimized Cr<sub>0.2</sub>-RuO<sub>2</sub>@NC catalyst exhibits exceptional OER performance, achieving a low overpotential of 223 mV at 10 mA/cm<sup>2</sup> and a Tafel slope of 63.8 mV/dec, significantly surpassing its 0.5% and 3% doped counterparts. Remarkably, it retains 99.9% of the initial activity after 27 h. Cr doping not only regulates the concentration of oxygen vacancies through lattice distortion. The strong Cr–O covalent bonding enhances the structural stability of the catalyst. This work establishes a general transition metal doping strategy for precise oxygen vacancy engineering, providing new design principles and theoretical foundations for developing high-performance OER electrocatalysts.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"53 8","pages":"Pages 1173-1182"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning oxygen vacancy via transition metal doping for efficient oxygen evolution reaction\",\"authors\":\"Linyao HUANG , Mi LUO , Tianhua YANG , Chenguang WANG\",\"doi\":\"10.1016/S1872-5813(25)60543-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a series of Cr-doped RuO<sub>2</sub>@NC catalysts (Cr<sub>0.1</sub>-RuO<sub>2</sub>@NC, Cr<sub>0.2</sub>-RuO<sub>2</sub>@NC, Cr<sub>0.4</sub>-RuO<sub>2</sub>@NC) with controlled Cr doping (0.5%, 1%, 3%) were prepared to investigate the mechanistic interplay between transition metal doping, oxygen vacancy (O<sub>V</sub>) formation and oxygen evolution reaction (OER) performance. Systematic characterization results reveal that the oxygen vacancy concentration follows a volcano-type trend with increasing Cr content, peaking at 1% Cr doping (Cr<sub>0.2</sub>-RuO<sub>2</sub>@NC). Combined X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirm that Cr doping effectively induces electronic structure reconstruction of RuO<sub>2</sub>, generating high-density oxygen vacancies that serve as electrochemically active sites. The optimized Cr<sub>0.2</sub>-RuO<sub>2</sub>@NC catalyst exhibits exceptional OER performance, achieving a low overpotential of 223 mV at 10 mA/cm<sup>2</sup> and a Tafel slope of 63.8 mV/dec, significantly surpassing its 0.5% and 3% doped counterparts. Remarkably, it retains 99.9% of the initial activity after 27 h. Cr doping not only regulates the concentration of oxygen vacancies through lattice distortion. The strong Cr–O covalent bonding enhances the structural stability of the catalyst. This work establishes a general transition metal doping strategy for precise oxygen vacancy engineering, providing new design principles and theoretical foundations for developing high-performance OER electrocatalysts.</div></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"53 8\",\"pages\":\"Pages 1173-1182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581325605433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581325605433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Tuning oxygen vacancy via transition metal doping for efficient oxygen evolution reaction
In this paper, a series of Cr-doped RuO2@NC catalysts (Cr0.1-RuO2@NC, Cr0.2-RuO2@NC, Cr0.4-RuO2@NC) with controlled Cr doping (0.5%, 1%, 3%) were prepared to investigate the mechanistic interplay between transition metal doping, oxygen vacancy (OV) formation and oxygen evolution reaction (OER) performance. Systematic characterization results reveal that the oxygen vacancy concentration follows a volcano-type trend with increasing Cr content, peaking at 1% Cr doping (Cr0.2-RuO2@NC). Combined X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirm that Cr doping effectively induces electronic structure reconstruction of RuO2, generating high-density oxygen vacancies that serve as electrochemically active sites. The optimized Cr0.2-RuO2@NC catalyst exhibits exceptional OER performance, achieving a low overpotential of 223 mV at 10 mA/cm2 and a Tafel slope of 63.8 mV/dec, significantly surpassing its 0.5% and 3% doped counterparts. Remarkably, it retains 99.9% of the initial activity after 27 h. Cr doping not only regulates the concentration of oxygen vacancies through lattice distortion. The strong Cr–O covalent bonding enhances the structural stability of the catalyst. This work establishes a general transition metal doping strategy for precise oxygen vacancy engineering, providing new design principles and theoretical foundations for developing high-performance OER electrocatalysts.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.