用于肿瘤治疗的线粒体靶向和生物能量破坏的Jahn-Teller扭曲工程自推进纳米机器人

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Tianying Luo , Mingyi Zhang , Jia Xu , Dechao Yuan , Beibei Yin , Yuzhou Zhu , Shuang Yan , Meng Pan , Dong Mo , Xicheng Li , Xuyue Liang , Zhaojuan Qin , Hongxin Deng , Zhiyong Qian
{"title":"用于肿瘤治疗的线粒体靶向和生物能量破坏的Jahn-Teller扭曲工程自推进纳米机器人","authors":"Tianying Luo ,&nbsp;Mingyi Zhang ,&nbsp;Jia Xu ,&nbsp;Dechao Yuan ,&nbsp;Beibei Yin ,&nbsp;Yuzhou Zhu ,&nbsp;Shuang Yan ,&nbsp;Meng Pan ,&nbsp;Dong Mo ,&nbsp;Xicheng Li ,&nbsp;Xuyue Liang ,&nbsp;Zhaojuan Qin ,&nbsp;Hongxin Deng ,&nbsp;Zhiyong Qian","doi":"10.1016/j.bioactmat.2025.08.021","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial metabolism plays a pivotal role in tumor progression, yet effective therapeutic targeting remains constrained by limited tissue penetration and lack of spatiotemporal control. Herein, we present Jahn-Teller distortion-engineered, self-propelled nanorobots (IDP@Z@AP) that integrate catalytic oxygen generation, mitochondria-targeted drug delivery, and real-time 3D NIR-II photoacoustic (PA) imaging for precision tumor therapy. The nanorobots are fabricated by co-encapsulating a NIR-II photothermal agent (IR1048) and a mitochondria-targeting chemotherapeutic (DOX-TPP) within a ZIF-8 framework, followed by in situ anchoring of ultrasmall AuPt bimetallic nanozymes. Pt-induced Jahn-Teller distortion modulates the electronic structure of AuPt, enhancing glucose oxidase- and catalase-like activities. Under NIR-II laser irradiation, photothermal-enhanced cascade catalysis drives autonomous motion and catalyzes intratumoral O<sub>2</sub> generation, facilitating deep tumor infiltration. <em>In vitro</em> studies reveal efficient mitochondrial targeting, resulting in significant mitochondrial membrane depolarization, intracellular ATP depletion, and suppressed cell migration and invasion. <em>In vivo</em>, 3D NIR-II PA imaging enables noninvasive visualization of nanorobot biodistribution and real-time mapping of catalytic oxygen generation within tumor tissues. This nanorobotic platform effectively modulates tumor hypoxia and enhances chemotherapeutic delivery to mitochondria, ultimately achieving potent tumor suppression. The work offers a smart, catalytically driven, mitochondria-targeted strategy with real-time therapeutic feedback for subcellular-level cancer therapy.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"54 ","pages":"Pages 273-290"},"PeriodicalIF":18.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jahn-Teller distortion-engineered self-propelled nanorobots for mitochondrial targeting and bioenergetic disruption in tumor therapy\",\"authors\":\"Tianying Luo ,&nbsp;Mingyi Zhang ,&nbsp;Jia Xu ,&nbsp;Dechao Yuan ,&nbsp;Beibei Yin ,&nbsp;Yuzhou Zhu ,&nbsp;Shuang Yan ,&nbsp;Meng Pan ,&nbsp;Dong Mo ,&nbsp;Xicheng Li ,&nbsp;Xuyue Liang ,&nbsp;Zhaojuan Qin ,&nbsp;Hongxin Deng ,&nbsp;Zhiyong Qian\",\"doi\":\"10.1016/j.bioactmat.2025.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitochondrial metabolism plays a pivotal role in tumor progression, yet effective therapeutic targeting remains constrained by limited tissue penetration and lack of spatiotemporal control. Herein, we present Jahn-Teller distortion-engineered, self-propelled nanorobots (IDP@Z@AP) that integrate catalytic oxygen generation, mitochondria-targeted drug delivery, and real-time 3D NIR-II photoacoustic (PA) imaging for precision tumor therapy. The nanorobots are fabricated by co-encapsulating a NIR-II photothermal agent (IR1048) and a mitochondria-targeting chemotherapeutic (DOX-TPP) within a ZIF-8 framework, followed by in situ anchoring of ultrasmall AuPt bimetallic nanozymes. Pt-induced Jahn-Teller distortion modulates the electronic structure of AuPt, enhancing glucose oxidase- and catalase-like activities. Under NIR-II laser irradiation, photothermal-enhanced cascade catalysis drives autonomous motion and catalyzes intratumoral O<sub>2</sub> generation, facilitating deep tumor infiltration. <em>In vitro</em> studies reveal efficient mitochondrial targeting, resulting in significant mitochondrial membrane depolarization, intracellular ATP depletion, and suppressed cell migration and invasion. <em>In vivo</em>, 3D NIR-II PA imaging enables noninvasive visualization of nanorobot biodistribution and real-time mapping of catalytic oxygen generation within tumor tissues. This nanorobotic platform effectively modulates tumor hypoxia and enhances chemotherapeutic delivery to mitochondria, ultimately achieving potent tumor suppression. The work offers a smart, catalytically driven, mitochondria-targeted strategy with real-time therapeutic feedback for subcellular-level cancer therapy.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"54 \",\"pages\":\"Pages 273-290\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25003755\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25003755","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

线粒体代谢在肿瘤进展中起着关键作用,但有效的治疗靶向仍然受到有限的组织穿透和缺乏时空控制的限制。在此,我们提出了Jahn-Teller扭曲工程,自行推进的纳米机器人(IDP@Z@AP),它集成了催化氧生成,线粒体靶向药物递送和实时3D NIR-II光声(PA)成像,用于精确的肿瘤治疗。纳米机器人是通过在ZIF-8框架内共封装NIR-II光热剂(IR1048)和线粒体靶向化疗药物(DOX-TPP),然后原位锚定超小AuPt双金属纳米酶来制造的。pt诱导的Jahn-Teller扭曲调节了AuPt的电子结构,增强了葡萄糖氧化酶和过氧化氢酶样活性。在NIR-II激光照射下,光热增强级联催化驱动自主运动,催化肿瘤内O2生成,促进肿瘤深部浸润。体外研究显示有效的线粒体靶向,导致显著的线粒体膜去极化,细胞内ATP消耗,抑制细胞迁移和侵袭。在体内,3D NIR-II PA成像可以实现纳米机器人生物分布的无创可视化和肿瘤组织中催化氧生成的实时绘图。这个纳米机器人平台有效地调节肿瘤缺氧,增强化疗给药到线粒体,最终实现有效的肿瘤抑制。这项工作为亚细胞水平的癌症治疗提供了一种智能的、催化驱动的、线粒体靶向的实时治疗反馈策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Jahn-Teller distortion-engineered self-propelled nanorobots for mitochondrial targeting and bioenergetic disruption in tumor therapy

Jahn-Teller distortion-engineered self-propelled nanorobots for mitochondrial targeting and bioenergetic disruption in tumor therapy
Mitochondrial metabolism plays a pivotal role in tumor progression, yet effective therapeutic targeting remains constrained by limited tissue penetration and lack of spatiotemporal control. Herein, we present Jahn-Teller distortion-engineered, self-propelled nanorobots (IDP@Z@AP) that integrate catalytic oxygen generation, mitochondria-targeted drug delivery, and real-time 3D NIR-II photoacoustic (PA) imaging for precision tumor therapy. The nanorobots are fabricated by co-encapsulating a NIR-II photothermal agent (IR1048) and a mitochondria-targeting chemotherapeutic (DOX-TPP) within a ZIF-8 framework, followed by in situ anchoring of ultrasmall AuPt bimetallic nanozymes. Pt-induced Jahn-Teller distortion modulates the electronic structure of AuPt, enhancing glucose oxidase- and catalase-like activities. Under NIR-II laser irradiation, photothermal-enhanced cascade catalysis drives autonomous motion and catalyzes intratumoral O2 generation, facilitating deep tumor infiltration. In vitro studies reveal efficient mitochondrial targeting, resulting in significant mitochondrial membrane depolarization, intracellular ATP depletion, and suppressed cell migration and invasion. In vivo, 3D NIR-II PA imaging enables noninvasive visualization of nanorobot biodistribution and real-time mapping of catalytic oxygen generation within tumor tissues. This nanorobotic platform effectively modulates tumor hypoxia and enhances chemotherapeutic delivery to mitochondria, ultimately achieving potent tumor suppression. The work offers a smart, catalytically driven, mitochondria-targeted strategy with real-time therapeutic feedback for subcellular-level cancer therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信