M.O. Sales , L.D. da Silva , M.S.S. Junior , F.A.B.F. de Moura
{"title":"二维洛伦兹相关无序系统中横波传播的研究","authors":"M.O. Sales , L.D. da Silva , M.S.S. Junior , F.A.B.F. de Moura","doi":"10.1016/j.wavemoti.2025.103620","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the propagation of shear vibrations in a rectangular system where disorder is introduced through the compressibility term, exhibiting Lorentzian spatial correlations. Our primary objective is to understand how these correlations influence the behavior and velocity of harmonic mode packets as they travel through the system. To achieve this, we employ a finite difference formalism to accurately capture the wave dynamics. Furthermore, we analyze how the spectral composition of the incident pulse affects wave propagation, shedding light on the interplay between disorder correlations and wave transport. By systematically exploring these factors, we aim to deepen our understanding of the fundamental mechanisms governing shear vibration propagation in disordered media.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103620"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of shear wave propagation in two-dimensional systems with Lorentzian-correlated disorder\",\"authors\":\"M.O. Sales , L.D. da Silva , M.S.S. Junior , F.A.B.F. de Moura\",\"doi\":\"10.1016/j.wavemoti.2025.103620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the propagation of shear vibrations in a rectangular system where disorder is introduced through the compressibility term, exhibiting Lorentzian spatial correlations. Our primary objective is to understand how these correlations influence the behavior and velocity of harmonic mode packets as they travel through the system. To achieve this, we employ a finite difference formalism to accurately capture the wave dynamics. Furthermore, we analyze how the spectral composition of the incident pulse affects wave propagation, shedding light on the interplay between disorder correlations and wave transport. By systematically exploring these factors, we aim to deepen our understanding of the fundamental mechanisms governing shear vibration propagation in disordered media.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103620\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525001313\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001313","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Investigation of shear wave propagation in two-dimensional systems with Lorentzian-correlated disorder
In this study, we investigate the propagation of shear vibrations in a rectangular system where disorder is introduced through the compressibility term, exhibiting Lorentzian spatial correlations. Our primary objective is to understand how these correlations influence the behavior and velocity of harmonic mode packets as they travel through the system. To achieve this, we employ a finite difference formalism to accurately capture the wave dynamics. Furthermore, we analyze how the spectral composition of the incident pulse affects wave propagation, shedding light on the interplay between disorder correlations and wave transport. By systematically exploring these factors, we aim to deepen our understanding of the fundamental mechanisms governing shear vibration propagation in disordered media.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.