欧洲指南告知肿瘤委员会会议中基于rag的GPT-4决策支持工具用于乳腺癌治疗

IF 2.9 2区 医学 Q2 ONCOLOGY
Ejso Pub Date : 2025-08-17 DOI:10.1016/j.ejso.2025.110384
Nuran Abdullayev , Jonathan Kottlors , Hikmat Habibov , Fahrettin Yilmaz , Chantal Zimmer , Nils Große Hokamp , Simon Lennartz , Vilayat Valiyev , Cavid Abbasli , Lukas Goertz , Jan Borggrefe , David Maintz , Koray Ersahin , Sebastian Sanduleanu
{"title":"欧洲指南告知肿瘤委员会会议中基于rag的GPT-4决策支持工具用于乳腺癌治疗","authors":"Nuran Abdullayev ,&nbsp;Jonathan Kottlors ,&nbsp;Hikmat Habibov ,&nbsp;Fahrettin Yilmaz ,&nbsp;Chantal Zimmer ,&nbsp;Nils Große Hokamp ,&nbsp;Simon Lennartz ,&nbsp;Vilayat Valiyev ,&nbsp;Cavid Abbasli ,&nbsp;Lukas Goertz ,&nbsp;Jan Borggrefe ,&nbsp;David Maintz ,&nbsp;Koray Ersahin ,&nbsp;Sebastian Sanduleanu","doi":"10.1016/j.ejso.2025.110384","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer is the most common cancer among women worldwide. Treatment decision-making in multidisciplinary tumor boards is complex, involving integration of clinical guidelines, patient data, and preferences.</div><div>We retrospectively evaluated MammaBoardGPT, an few-shot in-context learning and Retrieval Augmented Generation (RAG) enhanced GPT-4 model with European guidelines and five Tumor Board labeled cases, against standard GPT-4 in 25 breast cancer cases discussed at a German hospital.</div><div>After recursive prompting, MammaBoardGPT achieved complete agreement with tumor board decisions in 84 % of cases, partial agreement in 16 % and no disagreements; standard GPT-4 showed 76 % complete agreement, 20 % partial agreement, and 4 % complete disagreements.</div><div>A significant difference was observed in MammaBoardGPT's (Stuart-Maxwell P = 0.0048) but not for GPT-4 agreement with tumor board decisions before versus after recursive prompting (Stuart-Maxwell P = 0.135), neither for MammaBoardGPT and GPT-4 in their tumor board decision agreement post-recursive prompting (Stuart-Maxwell P = 0.37).</div><div>These findings support MammaBoardGPT's potential for tumor board decision support, warranting prospective validation and real-time assessment.</div></div>","PeriodicalId":11522,"journal":{"name":"Ejso","volume":"51 11","pages":"Article 110384"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"European guideline informed RAG-based GPT-4 decision support tool in tumor board meetings for breast cancer treatment\",\"authors\":\"Nuran Abdullayev ,&nbsp;Jonathan Kottlors ,&nbsp;Hikmat Habibov ,&nbsp;Fahrettin Yilmaz ,&nbsp;Chantal Zimmer ,&nbsp;Nils Große Hokamp ,&nbsp;Simon Lennartz ,&nbsp;Vilayat Valiyev ,&nbsp;Cavid Abbasli ,&nbsp;Lukas Goertz ,&nbsp;Jan Borggrefe ,&nbsp;David Maintz ,&nbsp;Koray Ersahin ,&nbsp;Sebastian Sanduleanu\",\"doi\":\"10.1016/j.ejso.2025.110384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Breast cancer is the most common cancer among women worldwide. Treatment decision-making in multidisciplinary tumor boards is complex, involving integration of clinical guidelines, patient data, and preferences.</div><div>We retrospectively evaluated MammaBoardGPT, an few-shot in-context learning and Retrieval Augmented Generation (RAG) enhanced GPT-4 model with European guidelines and five Tumor Board labeled cases, against standard GPT-4 in 25 breast cancer cases discussed at a German hospital.</div><div>After recursive prompting, MammaBoardGPT achieved complete agreement with tumor board decisions in 84 % of cases, partial agreement in 16 % and no disagreements; standard GPT-4 showed 76 % complete agreement, 20 % partial agreement, and 4 % complete disagreements.</div><div>A significant difference was observed in MammaBoardGPT's (Stuart-Maxwell P = 0.0048) but not for GPT-4 agreement with tumor board decisions before versus after recursive prompting (Stuart-Maxwell P = 0.135), neither for MammaBoardGPT and GPT-4 in their tumor board decision agreement post-recursive prompting (Stuart-Maxwell P = 0.37).</div><div>These findings support MammaBoardGPT's potential for tumor board decision support, warranting prospective validation and real-time assessment.</div></div>\",\"PeriodicalId\":11522,\"journal\":{\"name\":\"Ejso\",\"volume\":\"51 11\",\"pages\":\"Article 110384\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ejso\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0748798325008121\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ejso","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0748798325008121","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是全世界女性中最常见的癌症。多学科肿瘤委员会的治疗决策是复杂的,涉及临床指南、患者数据和偏好的整合。我们回顾性地评估了mamaboardgpt,这是一种基于欧洲指南和5例肿瘤委员会标记病例的少量情境学习和检索增强生成(RAG)增强GPT-4模型,与德国一家医院讨论的25例乳腺癌病例的标准GPT-4相比。在递归提示后,mamaboardgpt在84%的病例中与肿瘤委员会的决定完全一致,16%的病例部分一致,没有分歧;标准GPT-4显示76%完全一致,20%部分一致,4%完全不一致。在mamaboardgpt中观察到显著差异(stewart - maxwell P = 0.0048),但在递归提示前后,GPT-4与肿瘤委员会决定的一致性没有显著差异(stewart - maxwell P = 0.135),在递归提示后,mamaboardgpt和GPT-4的肿瘤委员会决定一致性也没有显著差异(stewart - maxwell P = 0.37)。这些发现支持了mamaboardgpt作为肿瘤委员会决策支持的潜力,保证了前瞻性验证和实时评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
European guideline informed RAG-based GPT-4 decision support tool in tumor board meetings for breast cancer treatment
Breast cancer is the most common cancer among women worldwide. Treatment decision-making in multidisciplinary tumor boards is complex, involving integration of clinical guidelines, patient data, and preferences.
We retrospectively evaluated MammaBoardGPT, an few-shot in-context learning and Retrieval Augmented Generation (RAG) enhanced GPT-4 model with European guidelines and five Tumor Board labeled cases, against standard GPT-4 in 25 breast cancer cases discussed at a German hospital.
After recursive prompting, MammaBoardGPT achieved complete agreement with tumor board decisions in 84 % of cases, partial agreement in 16 % and no disagreements; standard GPT-4 showed 76 % complete agreement, 20 % partial agreement, and 4 % complete disagreements.
A significant difference was observed in MammaBoardGPT's (Stuart-Maxwell P = 0.0048) but not for GPT-4 agreement with tumor board decisions before versus after recursive prompting (Stuart-Maxwell P = 0.135), neither for MammaBoardGPT and GPT-4 in their tumor board decision agreement post-recursive prompting (Stuart-Maxwell P = 0.37).
These findings support MammaBoardGPT's potential for tumor board decision support, warranting prospective validation and real-time assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ejso
Ejso 医学-外科
CiteScore
6.40
自引率
2.60%
发文量
1148
审稿时长
41 days
期刊介绍: JSO - European Journal of Surgical Oncology ("the Journal of Cancer Surgery") is the Official Journal of the European Society of Surgical Oncology and BASO ~ the Association for Cancer Surgery. The EJSO aims to advance surgical oncology research and practice through the publication of original research articles, review articles, editorials, debates and correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信