结合伯恩赛德过程和重要抽样来计算群轨道的数量

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Persi Diaconis , Chenyang Zhong
{"title":"结合伯恩赛德过程和重要抽样来计算群轨道的数量","authors":"Persi Diaconis ,&nbsp;Chenyang Zhong","doi":"10.1016/j.aam.2025.102955","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel and general algorithm for approximately counting the number of orbits under group actions. The method is based on combining the Burnside process and importance sampling. Specializing to unitriangular groups yields an efficient algorithm for estimating the number of conjugacy classes of such groups.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"172 ","pages":"Article 102955"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting the number of group orbits by marrying the Burnside process with importance sampling\",\"authors\":\"Persi Diaconis ,&nbsp;Chenyang Zhong\",\"doi\":\"10.1016/j.aam.2025.102955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel and general algorithm for approximately counting the number of orbits under group actions. The method is based on combining the Burnside process and importance sampling. Specializing to unitriangular groups yields an efficient algorithm for estimating the number of conjugacy classes of such groups.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"172 \",\"pages\":\"Article 102955\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825001174\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825001174","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的通用算法,用于群作用下轨道数的近似计算。该方法是基于伯恩赛德过程和重要抽样相结合的方法。专门化到单角群,得到了估计这种群的共轭类数量的有效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting the number of group orbits by marrying the Burnside process with importance sampling
This paper introduces a novel and general algorithm for approximately counting the number of orbits under group actions. The method is based on combining the Burnside process and importance sampling. Specializing to unitriangular groups yields an efficient algorithm for estimating the number of conjugacy classes of such groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信