应变工程、离子取代和共取代:提高KMgH3储氢性能的途径

IF 2.4 3区 化学 Q4 CHEMISTRY, PHYSICAL
Mihade El Akkel, Mounia Achqraoui, Naoual Bekkioui, Hamid Ez-Zahraouy
{"title":"应变工程、离子取代和共取代:提高KMgH3储氢性能的途径","authors":"Mihade El Akkel,&nbsp;Mounia Achqraoui,&nbsp;Naoual Bekkioui,&nbsp;Hamid Ez-Zahraouy","doi":"10.1016/j.chemphys.2025.112910","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the hydride perovskite KMgH<sub>3</sub>, using the density functional theory (DFT) calculations via WIEN2k to evaluate its potential for solid-state hydrogen storage. The compound's thermodynamic stability, structural, electronic, and hydrogen storage properties were explored. Furthermore, this study investigated the influence of triaxial tensile and compressive strain, as well as the partial substitution of potassium (K) and magnesium (Mg) with lithium (Li) and beryllium (Be), respectively, and the combined effect of co-substitution on the material's hydrogen storage performance. Remarkably, applying −8 % triaxial compressive strain improved the volumetric storage density from 38.1 to 49.0 gH<sub>2</sub>/l at −8 %. Substituting K and Mg significantly improved the gravimetric hydrogen capacity from 4.55 wt% to 5.66 wt% and 4.89 wt%, respectively. Co-substitution delivered even more promising results, surpassing the US Department of Energy (DOE). These findings highlight candidates with strong potential to advance next-generation hydrogen storage technologies.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"600 ","pages":"Article 112910"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain engineering, ionic substitution and co-substitution: Pathways to enhanced hydrogen storage performance of KMgH3\",\"authors\":\"Mihade El Akkel,&nbsp;Mounia Achqraoui,&nbsp;Naoual Bekkioui,&nbsp;Hamid Ez-Zahraouy\",\"doi\":\"10.1016/j.chemphys.2025.112910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the hydride perovskite KMgH<sub>3</sub>, using the density functional theory (DFT) calculations via WIEN2k to evaluate its potential for solid-state hydrogen storage. The compound's thermodynamic stability, structural, electronic, and hydrogen storage properties were explored. Furthermore, this study investigated the influence of triaxial tensile and compressive strain, as well as the partial substitution of potassium (K) and magnesium (Mg) with lithium (Li) and beryllium (Be), respectively, and the combined effect of co-substitution on the material's hydrogen storage performance. Remarkably, applying −8 % triaxial compressive strain improved the volumetric storage density from 38.1 to 49.0 gH<sub>2</sub>/l at −8 %. Substituting K and Mg significantly improved the gravimetric hydrogen capacity from 4.55 wt% to 5.66 wt% and 4.89 wt%, respectively. Co-substitution delivered even more promising results, surpassing the US Department of Energy (DOE). These findings highlight candidates with strong potential to advance next-generation hydrogen storage technologies.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"600 \",\"pages\":\"Article 112910\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425003118\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425003118","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了氢化物钙钛矿KMgH3,通过WIEN2k使用密度泛函理论(DFT)计算来评估其固态储氢的潜力。研究了该化合物的热力学稳定性、结构、电子和储氢性能。此外,本研究还考察了三轴拉伸和压缩应变,以及钾(K)和镁(Mg)分别被锂(Li)和铍(Be)部分取代,以及共取代对材料储氢性能的综合影响。当施加−8%的三轴压缩应变时,体积存储密度从38.1 gH2/l提高到49.0 gH2/l。取代K和Mg显著提高了重量氢容量,分别从4.55 wt%提高到5.66 wt%和4.89 wt%。共替代带来了更有希望的结果,超过了美国能源部(DOE)。这些发现突出了具有推进下一代储氢技术的强大潜力的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain engineering, ionic substitution and co-substitution: Pathways to enhanced hydrogen storage performance of KMgH3
This study examines the hydride perovskite KMgH3, using the density functional theory (DFT) calculations via WIEN2k to evaluate its potential for solid-state hydrogen storage. The compound's thermodynamic stability, structural, electronic, and hydrogen storage properties were explored. Furthermore, this study investigated the influence of triaxial tensile and compressive strain, as well as the partial substitution of potassium (K) and magnesium (Mg) with lithium (Li) and beryllium (Be), respectively, and the combined effect of co-substitution on the material's hydrogen storage performance. Remarkably, applying −8 % triaxial compressive strain improved the volumetric storage density from 38.1 to 49.0 gH2/l at −8 %. Substituting K and Mg significantly improved the gravimetric hydrogen capacity from 4.55 wt% to 5.66 wt% and 4.89 wt%, respectively. Co-substitution delivered even more promising results, surpassing the US Department of Energy (DOE). These findings highlight candidates with strong potential to advance next-generation hydrogen storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信