{"title":"用于材料挤压增材制造的超高性能聚合物:最新进展、挑战和优化观点","authors":"Nectarios Vidakis , Markos Petousis , Maria Spyridaki , Nikolaos Mountakis , Evgenia Dimitriou , Nikolaos Michailidis","doi":"10.1016/j.mser.2025.101086","DOIUrl":null,"url":null,"abstract":"<div><div>Material extrusion-based additive manufacturing (MEXAM) has emerged as a transformative technology for ultra-performance polymers (UPPs) and high-performance polymers (HPPs), enabling their use in demanding applications across diverse industries such as aerospace, automotive, medical, and defense. Their high strength-to-weight ratio, heat resistance, chemical stability, and performance retention under harsh conditions perfectly match the high potential of additive manufacturing for cost-effectiveness, flexibility, and adaptability. Among the most studied UPPs/HPPs, Polyimide (PΙ), polyetherketoneketone (PEKK), and polyetheretherketone (PEEK) have gained substantial attention due to their printability and superior functional properties. Despite these advantages, MEXAM of UPPs and HPPs presents considerable challenges. This review provides a comprehensive analysis of the molecular, rheological, thermal, and structural characteristics of UPPs/HPPs and their major composites that influence their printability and performance. A comparative evaluation of their advantages and limitations is presented, along with a discussion on recent advancements in process optimization. Research efforts for the optimization of MEXAM process control parameters were reviewed and interpreted. Furthermore, this work explores the integration of Artificial Intelligence (AI)-assisted optimization strategies to enhance processing efficiency and material properties. This study identifies key research gaps and highlights opportunities for future advancements in the field of MEXAM for UPPs and HPPs.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"167 ","pages":"Article 101086"},"PeriodicalIF":31.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra- and high-performance polymers for material extrusion additive manufacturing: Recent advancements, challenges, and optimization perspectives\",\"authors\":\"Nectarios Vidakis , Markos Petousis , Maria Spyridaki , Nikolaos Mountakis , Evgenia Dimitriou , Nikolaos Michailidis\",\"doi\":\"10.1016/j.mser.2025.101086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Material extrusion-based additive manufacturing (MEXAM) has emerged as a transformative technology for ultra-performance polymers (UPPs) and high-performance polymers (HPPs), enabling their use in demanding applications across diverse industries such as aerospace, automotive, medical, and defense. Their high strength-to-weight ratio, heat resistance, chemical stability, and performance retention under harsh conditions perfectly match the high potential of additive manufacturing for cost-effectiveness, flexibility, and adaptability. Among the most studied UPPs/HPPs, Polyimide (PΙ), polyetherketoneketone (PEKK), and polyetheretherketone (PEEK) have gained substantial attention due to their printability and superior functional properties. Despite these advantages, MEXAM of UPPs and HPPs presents considerable challenges. This review provides a comprehensive analysis of the molecular, rheological, thermal, and structural characteristics of UPPs/HPPs and their major composites that influence their printability and performance. A comparative evaluation of their advantages and limitations is presented, along with a discussion on recent advancements in process optimization. Research efforts for the optimization of MEXAM process control parameters were reviewed and interpreted. Furthermore, this work explores the integration of Artificial Intelligence (AI)-assisted optimization strategies to enhance processing efficiency and material properties. This study identifies key research gaps and highlights opportunities for future advancements in the field of MEXAM for UPPs and HPPs.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"167 \",\"pages\":\"Article 101086\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X25001640\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001640","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultra- and high-performance polymers for material extrusion additive manufacturing: Recent advancements, challenges, and optimization perspectives
Material extrusion-based additive manufacturing (MEXAM) has emerged as a transformative technology for ultra-performance polymers (UPPs) and high-performance polymers (HPPs), enabling their use in demanding applications across diverse industries such as aerospace, automotive, medical, and defense. Their high strength-to-weight ratio, heat resistance, chemical stability, and performance retention under harsh conditions perfectly match the high potential of additive manufacturing for cost-effectiveness, flexibility, and adaptability. Among the most studied UPPs/HPPs, Polyimide (PΙ), polyetherketoneketone (PEKK), and polyetheretherketone (PEEK) have gained substantial attention due to their printability and superior functional properties. Despite these advantages, MEXAM of UPPs and HPPs presents considerable challenges. This review provides a comprehensive analysis of the molecular, rheological, thermal, and structural characteristics of UPPs/HPPs and their major composites that influence their printability and performance. A comparative evaluation of their advantages and limitations is presented, along with a discussion on recent advancements in process optimization. Research efforts for the optimization of MEXAM process control parameters were reviewed and interpreted. Furthermore, this work explores the integration of Artificial Intelligence (AI)-assisted optimization strategies to enhance processing efficiency and material properties. This study identifies key research gaps and highlights opportunities for future advancements in the field of MEXAM for UPPs and HPPs.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.